Determining the genetic origin of Nitrate contamination in aquifers of Northern Gujarat, India
Over the past decades, the Gujarat state of India experienced intensive agricultural and industrial activities, fertilizer consumption and abstraction of groundwater, which in turn has degraded the ground water quality. Protection of aquifers from nitrate pollution is a matter of prime concern for the planners and decision-makers. The present study assessed the spatial and temporal variation of groundwater nitrate levels in areas with different land use/land cover activities for both pre- and post-monsoon period. The pre-monsoon nitrate level (1.6–630.7 mg/L) in groundwater was observed to be higher as compared to the post-monsoon level (2.7–131.7 mg/L), possibly due to insufficient recharge and evaporation induced enrichment of agrichemical salts in groundwater. High HCO3 ? (200–1,000 mg/L) as well as SO4 2?/Cl? (0.111–0.992) in post-monsoon period provides a favourable environment for denitrification, and lower the NO3 levels during the post-monsoon period. The K vs NO3 scatter plot suggests a common source of these ions when the concentration is