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Machine Learning
- Grew out of work in AI
- New capability for computers 

Examples: 
- Database mining 

Large datasets from growth of automation/web.  
E.g., Web click data, medical records, biology, engineering

- Applications can’t program by hand.
E.g., Autonomous helicopter, handwriting recognition, most of 
Natural Language Processing (NLP), Computer Vision. 

- Self-customizing programs
E.g., Amazon, Netflix product recommendations

- Understanding human learning (brain, real AI).
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Machine Learning definition
• Arthur Samuel (1959). Machine Learning: Field of 

study that gives computers the ability to learn 
without being explicitly programmed. 

• Tom Mitchell (1998) Well-posed Learning 
Problem: A computer program is said to learn 
from experience E with respect to some task T 
and some performance measure P, if its 
performance on T, as measured by P, improves 
with experience E. 
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Machine learning algorithms:

- Supervised learning

- Unsupervised learning

Others: Reinforcement learning, recommender 
systems. 

Also talk about: Practical advice for applying 
learning algorithms. 
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Supervised 
Learning
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Housing price prediction. 

Price ($) 
in 1000’s

Size in feet2 

Regression: Predict continuous 
valued output (price)

Supervised Learning

“right answers” given
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Breast cancer (malignant, benign)

Classification

Discrete valued 
output (0 or 1)Malignant?

1(Y)

0(N)

Tumor Size

Tumor Size
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Tumor Size

Age

- Clump Thickness

- Uniformity of Cell Size

- Uniformity of Cell Shape

…
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Template
vertLeftWhite2

Treat both as classification problems. 

Treat problem 1 as a classification problem, problem 2 as a regression problem. 

Treat problem 1 as a regression problem, problem 2 as a classification problem. 

Treat both as regression problems. 

You’re running a company, and you want to develop learning algorithms to address 
each of two problems.

Problem 1: You have a large inventory of identical items.  You want to predict how 
many of these items will sell over the next 3 months.
Problem 2: You’d like software to examine individual customer accounts, and for each 
account decide if it has been hacked/compromised. 

Should you treat these as classification or as regression problems? 
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Unsupervised 
Learning
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Supervised Learning
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Unsupervised Learning

x
1

x
2

14



Organize computing clusters Social network analysis

Image credit: NASA/JPL-Caltech/E. Churchwell (Univ. of Wisconsin, Madison) 

Astronomical data analysisMarket segmentation
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Model 
representation
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Housing Prices
(Portland, OR)

Price
(in 1000s 
of dollars)

Size (feet2)

Supervised Learning

Given the “right answer” for 
each example in the data.

Regression Problem

Predict real-valued output
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Notation:
 

   m = Number of training examples
   x’s = “input” variable / features
   y’s = “output” variable / “target” variable

Size in feet2 
(x)

Price ($) in 
1000's (y)

2104 460
1416 232
1534 315
852 178
… …

Training set of
housing prices
(Portland, OR)
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Training Set

Learning Algorithm

h
Size of 
house

Estimated 
price

How do we represent h ?

Linear regression with one variable.
Univariate linear regression.
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Cost function
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How to choose     ‘s ?

Training Set

Hypothesis:

‘s:      Parameters

Size in feet2 
(x)

Price ($) in 
1000's (y)

2104 460
1416 232
1534 315
852 178
… …
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y

x

Idea: Choose             so that                    
          

                      is close to     for our 
        training examples 
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Hypothesis:

Parameters:

Cost Function:

Goal:
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y

x

(for fixed     , this is a function of x) (function of the parameter      )
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y

x

(for fixed     , this is a function of x) (function of the parameter      )
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y

x

(for fixed     , this is a function of x) (function of the parameter      )
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Hypothesis:

Parameters:

Cost Function:

Goal:
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(for fixed           , this is a function of x) (function of the parameters            )
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(for fixed           , this is a function of x) (function of the parameters            )
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(for fixed           , this is a function of x) (function of the parameters            )
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(for fixed           , this is a function of x) (function of the parameters            )
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Gradient 
descent
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Have some function

Want 

Outline:

• Start with some

• Keep changing              to reduce                     

until we hopefully end up at a minimum
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θ1
θ0

J(θ0,θ1)
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θ0

θ1

J(θ0,θ1)
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Gradient descent algorithm

Correct: Simultaneous update Incorrect:
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If α is too small, gradient descent 
can be slow.

If α is too large, gradient descent 
can overshoot the minimum. It may 
fail to converge, or even diverge.
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at local optima

Current value of 
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Gradient descent can converge to a local 
minimum, even with the learning rate α fixed.

As we approach a local 
minimum, gradient 
descent will automatically 
take smaller steps. So, no 
need to decrease α over 
time. 
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Gradient descent for 
linear regression
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Gradient descent algorithm Linear Regression Model
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Gradient descent algorithm

update 
and

simultaneously
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θ1
θ0

J(θ0,θ1)
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θ0

θ1

J(θ0,θ1)
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(for fixed           , this is a function of x) (function of the parameters            )
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(for fixed           , this is a function of x) (function of the parameters            )
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(for fixed           , this is a function of x) (function of the parameters            )
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(for fixed           , this is a function of x) (function of the parameters            )
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(for fixed           , this is a function of x) (function of the parameters            )
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(for fixed           , this is a function of x) (function of the parameters            )

52



(for fixed           , this is a function of x) (function of the parameters            )
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(for fixed           , this is a function of x) (function of the parameters            )
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(for fixed           , this is a function of x) (function of the parameters            )
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“Batch” Gradient Descent

“Batch”: Each step of gradient descent 
uses all the training examples.

https://stats.stackexchange.com/questions/49528/batch-gradient-descent-versus-stochastic
-gradient-descent
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Linear Regression with 
multiple variables

Multiple features
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Size (feet2)
Price 

($1000)

2104 460
1416 232
1534 315
852 178
… …

Multiple features (variables).
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Size 
(feet2)

Number 
of 

bedrooms
Number 
of floors

Age of home 
(years)

Price ($1000)

2104 5 1 45 460
1416 3 2 40 232
1534 3 2 30 315
852 2 1 36 178
… … … … …

Multiple features (variables).

Notation:

= number of features

= input (features) of        training example.

= value of feature    in        training example.
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Hypothesis:

Previously:
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For convenience of notation, define                .

Multivariate linear regression.
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Linear Regression with 
multiple variables

Gradient descent for 
multiple variables
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Hypothesis:

Cost function:

Parameters:

(simultaneously update for every                        )

Repeat

Gradient descent:
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(simultaneously update             )

Gradient Descent

Repeat

Previously (n=1):

New algorithm               :

Repeat

(simultaneously update        for      
                        )
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Linear Regression with 
multiple variables

Gradient descent in 
practice I: Feature Scaling
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E.g.       = size (0-2000 feet2)

              = number of bedrooms (1-5)

Feature Scaling
Idea: Make sure features are on a similar scale.
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Feature Scaling

Get every feature into approximately a                           range.
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Replace      with                to make features have approximately zero mean 
(Do not apply to              ).

Mean normalization

E.g. 
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Linear Regression with 
multiple variables

Gradient descent in 
practice II: Learning rate
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Gradient descent

- “Debugging”: How to make sure gradient 

descent is working correctly.

- How to choose learning rate     .
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Example automatic 

convergence test:

Declare convergence if       

decreases by less than       

in one iteration.

No. of iterations

Making sure gradient descent is working correctly.
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Making sure gradient descent is working correctly.

Gradient descent not working. 

Use smaller    . 

No. of iterations

No. of iterations No. of iterations

- For sufficiently small     ,             should decrease on every iteration.
- But if      is too small, gradient descent can be slow to converge.
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Summary:

- If     is too small: slow convergence.

- If     is too large:         may not decrease on 

every iteration; may not converge.

To choose    , try
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Linear Regression with 
multiple variables

Features and 
polynomial regression
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Housing prices prediction
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Polynomial regression

Price
(y)

Size (x)
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Choice of features

Price
(y)

Size (x)
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Logistic
Regression

Classification
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Classification

Email: Spam / Not Spam?
Online Transactions: Fraudulent (Yes / No)?
Tumor: Malignant / Benign ?

0: “Negative Class” (e.g., benign tumor)
 

1: “Positive Class” (e.g., malignant tumor)
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Tumor Size

Threshold classifier output             at 0.5:

If                        , predict “y = 1”

If                        , predict “y = 0”

Tumor Size

Malignant ?

(Yes) 1

(No) 0
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Classification:    y   =   0   or   1

can be > 1 or < 0

Logistic Regression:
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Logistic
Regression

Hypothesis
Representation
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Sigmoid function
Logistic function

Logistic Regression Model

Want

1

0.5

0
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Interpretation of Hypothesis Output

= estimated probability that y = 1 on input x 

Tell patient that 70% chance of tumor being malignant 

Example:  If 

“probability that y = 1, given x,
  parameterized by    ”
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Logistic
Regression

Decision boundary
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Logistic regression

  Suppose predict “          “ if

    predict “          “  if

z

1
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x

1

x

2

Decision Boundary

1 2 3

1

2

3

Predict “          “ if 
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Non-linear decision boundaries

x

1

x

2

Predict “          “ if 

x

1

x

2

1-1

-1

1
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Logistic
Regression

Cost function
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Training set:

How to choose parameters    ?

m examples
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Cost function

Linear regression:

“non-convex” “convex”

https://stats.stackexchange.com/questions/324561/difference-between-convex-and-co
ncave-functions
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https://stats.stackexchange.com/questions/324561/difference-between-convex-and-concave-functions
https://stats.stackexchange.com/questions/324561/difference-between-convex-and-concave-functions


Logistic regression cost function

If y = 1
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Logistic
Regression

Simplified cost function 
and gradient descent
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Logistic regression cost function

Output 

To fit parameters    : 

To make a prediction given new   :
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Gradient Descent

Want                    :

(simultaneously update all     )

Repeat

Algorithm looks identical to linear regression!
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Logistic
Regression

Advanced 
optimization
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Optimization algorithm

Cost function         . Want                    .

Given    , we have code that can compute
-  
-  

(for                             )

Repeat

Gradient descent:
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Optimization algorithm

Given    , we have code that can compute
-  
-  

(for                             )

Optimization algorithms:
- Gradient descent

- Conjugate gradient
- BFGS
- L-BFGS

Advantages:
- No need to manually pick 
- Often faster than gradient 

descent.
Disadvantages:

- More complex
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Example:
 function [jVal, gradient] 
           = costFunction(theta)

jVal = (theta(1)-5)^2 + ...     
    (theta(2)-5)^2;

gradient = zeros(2,1);
gradient(1) = 2*(theta(1)-5);
gradient(2) = 2*(theta(2)-5);

options = optimset(‘GradObj’, ‘on’, ‘MaxIter’, ‘100’);
initialTheta = zeros(2,1);
[optTheta, functionVal, exitFlag] ...
     = fminunc(@costFunction, initialTheta, options);
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gradient(1) = [                    ];

function [jVal, gradient] = costFunction(theta)

theta = 

jVal = [                 ];

gradient(2) = [                    ];

gradient(n+1) = [                      ];

code to compute

code to compute

code to compute

code to compute
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Logistic
Regression

Multi-class classification: 
One-vs-all
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Multiclass classification

Email foldering/tagging: Work, Friends, Family, Hobby

Medical diagrams: Not ill, Cold, Flu

Weather: Sunny, Cloudy, Rain, Snow
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x

1

x

2

x

1

x

2

Binary classification: Multi-class classification:
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x
1

x
2

One-vs-all (one-vs-rest):

Class 1:
Class 2:
Class 3:

x

1

x

2

x

1

x

2

x

1

x

2
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One-vs-all

Train a logistic regression classifier               for each 
class    to predict the probability that           .

On a new input    , to make a prediction, pick the 
class    that maximizes
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Regularization

The problem of
overfitting
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Example: Linear regression (housing prices)

Overfitting: If we have too many features, the learned hypothesis 
may fit the training set very well (                                             ), but 
fail to generalize to new examples (predict prices on new 
examples).

Pr
ic

e

Size
Pr

ic
e

Size

Pr
ic

e

Size
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Example: Logistic regression

(    = sigmoid function)

x
1

x
2

x
1

x
2

x
1

x
2
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Addressing overfitting:

Pr
ic

e

Size

size of house

no. of bedrooms

no. of floors

age of house

average income in neighborhood

kitchen size
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Addressing overfitting:

Options:
1. Reduce number of features.

― Manually select which features to keep.
― Model selection algorithm (later in course).

2. Regularization.
― Keep all the features, but reduce magnitude/values of 

parameters    .
― Works well when we have a lot of features, each of 

which contributes a bit to predicting    .
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Regularization

Cost function
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Intuition

Suppose we penalize and make     ,      really small.

Pr
ic

e

Size of house

Pr
ic

e

Size of house
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Small values for parameters 
― “Simpler” hypothesis
― Less prone to overfitting 

Regularization.

Housing:
― Features: 
― Parameters:
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Regularization.

Pr
ic

e

Size of house
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In regularized linear regression, we choose      to minimize

What if      is set to an extremely large value (perhaps for too large 
for our problem, say                  )?

Pr
ic

e
Size of house

- Algorithm works fine; setting     to be very large can’t hurt it
- Algorithm fails to eliminate overfitting.
- Algorithm results in underfitting. (Fails to fit even training data 

well).
- Gradient descent will fail to converge.
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Regularization

Regularized linear 
regression
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Regularized linear regression
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Gradient descent

Repeat
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Neural Networks: 
Representation

Non-linear 
hypotheses
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Non-linear Classification

x
1

x
2

size

# bedrooms

# floors

age
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Neural Networks: 
Representation

Neurons and 
the brain
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Neural Networks

Origins: Algorithms that try to mimic the brain.
Was very widely used in 80s and early 90s; popularity 
diminished in late 90s.
Recent resurgence: State-of-the-art technique for many 
applications
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[Roe et al., 1992]

Auditory cortex learns to see

Auditory Cortex

The “one learning algorithm” hypothesis

[Roe et al., 1992]
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Somatosensory cortex learns to see

Somatosensory Cortex

The “one learning algorithm” hypothesis

[Metin & Frost, 1989]
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Seeing with your 
tongue

Human echolocation (sonar)

Haptic belt: Direction sense Implanting a 3rd eye

Sensor representations in the brain

[BrainPort; Welsh & Blasch, 1997; Nagel et al., 2005; Constantine-Paton & Law, 2009]
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Neural Networks: 
Representation

Model
representation I
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Neuron in the brain
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Neurons in the brain

[Credit: US National Institutes of Health, National Institute on Aging]
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Neuron model: Logistic unit

Sigmoid (logistic) activation function.
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Neural Network

Layer 3Layer 1 Layer 2
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Neural Network
“activation” of unit    in layer 

matrix of weights controlling 
function mapping from layer    to 
layer

If network has      units in layer    ,           units in layer           , then
will be of dimension                               .
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Neural Networks: 
Representation

Model 
representation II
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Add              .

Forward propagation: Vectorized implementation
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Layer 3Layer 1 Layer 2

Neural Network learning its own features
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Layer 3Layer 1 Layer 2

Other network architectures

Layer 4
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Neural Networks: 
Representation

Examples and 
intuitions I
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Non-linear classification example: XOR/XNOR

    ,      are binary (0 or 1).

x
1

x
2

x
1

x
2

137



Simple example: AND

0 0
0 1
1 0
1 1

1.0
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Example: OR function

0 0
0 1
1 0
1 1

-10

20

20
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Neural Networks: 
Representation

Examples and 
intuitions II

Machine Learning
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Negation:

0
1

141



Putting it together: 

0 0
0 1
1 0
1 1

-30

20

20

10

-20

-20

-10

20

20
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Neural Network intuition

Layer 3Layer 1 Layer 2 Layer 4
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Handwritten digit classification

[Courtesy of Yann LeCun]
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Multiple output units: One-vs-all.

Pedestrian Car Motorcycle Truck

Want                      ,                         ,                        ,   etc.

when pedestrian         when car when motorcycle
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Multiple output units: One-vs-all.

Want                      ,                         ,                        ,   etc.

when pedestrian         when car when motorcycle

Training set: 

       one of          ,  ,             ,

pedestrian    car motorcycle   truck
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Neural Networks: 
Learning

Cost function

147



Neural Network (Classification)

Binary classification
 

  1 output unit

Layer 1 Layer 2 Layer 3 Layer 4

Multi-class classification (K classes)

 
 K output units

total no. of layers in network

no. of units (not counting bias unit) in 
layer 

pedestrian  car  motorcycle   truck

E.g.           ,             ,                 ,
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Cost function

Logistic regression:

Neural network:
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Neural Networks: 
Learning

Backpropagation 
algorithm

150



Gradient computation

Need code to compute:
-  
-  
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Gradient computation

Given one training example (   ,    ):

Forward propagation:

Layer 1 Layer 2 Layer 3 Layer 4
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Gradient computation: Backpropagation algorithm

Intuition:              “error” of node    in layer   .

Layer 1 Layer 2 Layer 3 Layer 4

For each output unit (layer L = 4)
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Backpropagation algorithm

Training set

Set                    (for all          ).

For

Set

Perform forward propagation to compute         for      

Using       , compute

Compute 
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Neural Networks: 
Learning

Backpropagation 
intuition
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Forward Propagation

156
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Calculating the Total Error
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The Backwards Pass
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The Backwards Pass
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