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Data Analysis



Data Analysis

* What is data analysis?

To extract relevant information contained in the data which can
then be used to solve a given problem.




How do we extract information from data?

 Using some statistical technique

« Number of schemes exist for classifying techniques

 Most of them are based on

— Measurement Scale

— Variables (types)




What 1s Measurement?

Measurement is a process by which numbers or symbols are
attached to given characteristics or properties of stimuli
according to predetermined rules or procedures

Examples: any region can be described with respect to a
number of characteristics: temperature, rainfall, agroclimatic
zone, humidity etc.

Characteristics of ocean: Ocean colour, temperature etc...




Measurement Scale

Steven (1946) postulated four types of measurement
scale:

« Nominal
 Ordinal
e |nterval

e Ratio




Variables

« Avariable is a property or characteristics of a thing or
people that varies in quality and quantity

 Variables can be classified as:
— Metric: measured using interval and ratio scale
— Non-metric: measured using ordinal and nominal scale




Classification of Data Analytic methods

« Dependence Methods

— One (or more) variables are dependent variables, to be explained or
predicted by others (independent variables)

 Interdependence methods
- No variables thought of as “dependent”




Dependence Methods

 Classification of dependence methods based on:

— Number of variables (one or more) for independent and
dependent variables

— Measurement scale (metric/non-metric) for independent
and dependent variables




Dependence Methods

Independent
Variable(s)

Dependent variables

One Metric

Non Metric

More than one Metric

Non metric

Metric

Regression

T-test

Multiple
regression

ANOVA

Non metric

Discriminant
Analysis,
logistic
regression

Discrete
discriminant
analysis

Discriminant
Analysis;
Logistic
regression

Discrete
Discriminant
analysis
Conjoint
Analysis

More than one

Metric

Canonical
Correlation

MANOVA

Canonical
Correlation

MANOVA

Nonmetric

Multiple group

discriminant
analysis

Discrete MDA

MDA

Discrete MDA

Sharma: Applied multivariate techniques



Interdependence Methods

Type of Data

Number of variables Metric Non metric
Two Simple Correlation Two-way contingency
table

Loglinear models

More than two Principal Components Multiway Contigency
~Factor Anaiysis, tables
Cluster Analysis Loglinear models
Correspondence
Analysis

Sharma: Applied multivariate techniques



Fundamentals on Data for PCA

Mean and mean-centered data

Degree of Freedom

Variance, Sum of squares, and cross products
Standardization




Mean and Mean centering

* Mean: measure of central tendency

* Another way to represent data 1s by centering with
respect to mean




Degree of Freedom

Number of independent pieces of information contained in a
dataset that are used for computing a given summary measure.

Degree of freedom for mean centered data is n-1 where n is the
number of observations




Variance

 Variance: amount of dispersion in the dataset

 \ariance Is average of square of difference from the
mean y _

d ('xi B x)
s% =12 =8S1df

n-1

Where s? stands for the sample variance

SS = Sum of Squares

= Sum of squared deviation from
mean

df = Degree of freedom

X is the sample mean

n is the total number of values in the sample
. Xi is the value of the i-th observation.
e ) represents a summation




Measures of Assoclation

« Scatter diagram plot provides a graphical description of
positive/negative, linear/non-linear relationship

« Some numerical description of the positive/negative,
linear/non-linear relationship are obtained by:

— Covarlance
— Coefficient of correlation




Covariance

« A measure of covariation between variables
 Variance is average of square of difference from the mean

J _
a. (xi - x)2
§° =12 =SS 1df
n-1

Where s? stands for the sample variance

X is the sample mean 55 = Sum of Squares

df = Degree of freedom

n is the total number of values in the sample

Xi is the value of the i-th observation.
. Z represents a summation




Measures of Association: Example

« Asample of monthly rainfall data and ENSO index are
collected and shown below:

(o) DJF temparcture va. ENSO index (b) DJF precipitation vs. ENSO Index
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* How is the relationship between Rainfall and MEI index? Is the
relationship linear/non-linear, positive/negative, etc.




Covariance

Measure of the covariation between variables

Mean of products of deviations from the variable mean:
n-1
N _ _
a (x- x)(v- )

cov(X,Y)="2 1 =SCPdf
n -

Where cov(X,Y) Is the covariance
X,Y are the means of X and Y respectively
n is the total number of values in the population

Xi» ¥i are the values of the i-th observations of X and Y
respectively.

2. represents a summation
SCP Sum of cross product
df Degree of freedom




Sum of Squared and cross product matrix(SSCP)

SS and SCP are summarized in a matrix called sum of squared and cross products matrix SSCP

SSCP matrix
Variable 1 Variable 2
Variable 1 SS, SCP,,
Variable 2 SCP,, SS,

2 variables: 2 variance, 1 covariance
p variables: p variance, p(p-1)/2 covariance




Sum of Squared and cross product matrix(SSCP)

SS and SCP are summarized in a matrix called sum of squared and cross products matrix SSCP

SSCP matrix
Variable 1 Variable 2
Variable 1 SS, SCP,,
Variable 2 SCP,, SS,

2 variables: 2 variance, 1 covariance
p variables: p variance, p(p-1)/2 covariance




Variance Covariance Matrix (S)

S=SSCP/df
Variable 1 Variable 2
Variable 1 (SS,)/df (SCP,,) /df

Variable 2 (SCP,,) /df (SS,)/df




Covariance

If two variables increase/decrease together-> large positive
covariance -2 Positive Relationship

If with increase in one variable, the other decreases and
vice versa = Large negative covariance - Negative
relationship

If two variables are unrelated, the covariance may be a
small number.

How large is large? How small is small?




Covariance

How large is large?
How small is small?

A drawback of covariance Is that it is usually difficult to
provide any guideline how large covariance shows a strong
relationship and how small covariance shows no
relationship.

Coefficient of correlation can overcome this drawback to a
certain extent.




Coefficient of Correlation

The coefficient of correlation is the covariance divided by
the standard deviations of X and Y:

_COV(X.Y)

0,0,

yo,

Where r is the sample coefficient of correlation
cov(X,Y) is the covariance
Sy, Sy are the means of X and Y respectively




Standardization

_ COV( XY ) ﬁ Division by Standard Deviation

T e

Standardized data are obtained by dividing mean corrected data by respective
Standard deviation

Covariance of two standardized variables is called correlation coefficient or Pearson
Product moment correlation.




Principal Component Analysis (PCA)

nat is PCA?
nen do we use PCA?
nat is the geometric interpretation of PCA?

S 2 ==

nat is the mathematical structure of PCA?
How do we interpret the results from PCA?



Data Reduction

Summarization of data with many (p) variables by a smaller set of
(k) derived variables.
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PCA

» Invented by Pearson (1901) and Hotelling (1933)

» Summarizes a data matrix of n objects by p variables, which
may be correlated through uncorrelated axes (principal
components) that are linear combinations of the original p
variables

» The maximum number of new variables (uncorrelated) that
can be formed Is equal to number of original variables




When can we use PCA?

For dimension reduction without much loss of information: To
remove redundancy

To extract important features/dominant patterns from large
dataset

To identify similarity and dissimilarity among variables




PCA on SST Anomaly (1910-2015)
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Caribbean probably exceeds the U.S. Envi-

ronmental Protection Agency’s 24-hour stan-
dard. Although there is no evidence that ex-
posure to dust across this region presents a
health problem, it does demonstrate how cli-

mate processes can bring about changes in
our environment that could have a wide range
of consequences on intercontinental scales.
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PCA of northern
summer rainfall
over tropical Afri-
ca during 1930-
2000. The two
leading patterns
of observed pre-
cipitation explain
25% and 15% of
the total variance,
their  modeled
counterparts 32%
and 21% of the
ensemble-mean
variance, respec-
tively. (A and D)
Leading spatial
patterns (EOFs)
in the model.
Red, positive pre-
cipitation anoma-
lies; blue, negative
anomalies. (B and
E) Leading PCs;
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Oceanic Forcing of Sahel Rainfall
on Interannual to Interdecadal

Time Scales
A. Giannini,'*t R. Saravanan,’ P. Chang?®

We present evidence, based on an ensemble of integrations with NSIPP1 (ver-
sion 1 of the atmospheric general circulation model developed at NASA's
Goddard Space Flight Center in the framework of the Seasonal-to-Interannual
Prediction Project) forced only by the observed record of sea surface temper-
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(B) is interannual in nature, whereas (E) captures the well-known trend in
Sahel rainfall. The correlation between observed (red, solid line) and modeled
(blue, dashed line) Gulf of Guinea PCs is 0.62; that between Sahel PCs is
0.73. (C and F) Regression maps of the leading model PCs with
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Intra-urban biomonitoring: Source apportionment using tree barks to @Cmm
identify air pollution sources

Tiana Carla Lopes Moreira *“*, Regiani Carvalho de Oliveira *¢, Luis Fernando Louren¢o Amato *,
Choong-Min Kang ¢, Paulo Hildrio Nascimento Saldiva *¢, Mitiko Saiki ¢

* Medical School of S@o Paulo University (FMUSP), Sao Paulo, SP, Brazil
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ARTICLE INFO ABSTRACT

Article history: Itis of great interest to evaluate if there is a relationship between possible sources and trace elements using bio-
Received 1 December 2015 monitoring techniques. In this study, tree bark samples of 171 trees were collected using a biomonitoring tech-
m"'{:‘; 'é‘ r‘\':r'::dzg"’g‘ 4 March 2016 nique in the inner city of S3o Paulo. The trace elements (Al Ba, Ca, Cl, Cu, Fe, K, Mg, Mn, Na, P, Rb, S, Sr and Zn)

were determined by the energy dispersive X-ray fluorescence (EDXRF) spectrometry. The Principal Component
Analysis (PCA) was applied to identify the plausible sources associated with tree bark measurements. The
greatest source was vehicle-induced non-tailpipe emissions derived mainly from brakes and tires wear-out
and road dust resuspension {characterized with Al, Ba, Cu, Fe, Mn and Zn), which was explained by 27.1% of
the variance, followed by cement (14.8%), sea salt (11.6%) and biomass burning ( 10%), and fossil fuel combustion
(9.8%). We also verified that the elements related to vehicular emission showed different concentrations at dif-
ferent sites of the same street, which might be helpful for a new street classification according to the emission
source, The spatial distribution maps of element concentrations were obtained to evaluate the different levels
of pollution in streets and avenues. Results indicated that biomonitoring techniques using tree bark can be ap-
plied to evaluate dispersion of air pollution and provide reliable data for the further epidemiological studies.

© 2016 Elsevier Ltd. All rights reserved.

Available online 17 March 2016
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RESEARCH ARTICLE

Implications of space-time orientation for Principal
Components Analysis of Earth observation image time series

Elia Axinia Machado-Machado - Neeti Neeti «
J. Ronald Eastman « Hao Chen

Received: 24 August 2010 / Accepted: 17 May 2011 /Published online: 2 June 2011

€ Springer-Verlag 2011

Abstract A time series of geographic images can be viewed
from two perspectives: as a set of images, each image
representing a slice of time, or as a grid of temporal profiles
(one at each pixel location). In the context of Principal
Components Analysis (PCA), these different orientations are
known as T-mode and S-mode analvsis respectivelv. In the

detrends over space. Further, in the formation of components,
S-mode PCA preferences pattemns that are prevalent over space
while T-mode PCA preferences patterns that are prevalent over
time. The two orentations thus provide complementary
insights into the nature of vanability within the series.

35



PCA on time series of monthly anomaly of lower tropospheric temperature (1982-2007)
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PCA on time series of monthly anomaly of lower tropospheric temperature (1982-2007)
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Modes of Analysis in PCA

In PCA /Factor Analysis literature, there are different modes of analysis for
analyzing multi-dimensional data which depends on how the data is organized

called orientation.

Common Ways of Analyzing the Cube
(Cattell’s Modes of Analysis)

2__tl Data Matrix
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(Source: Berry (1964))



Geometric Interpretation of PCA

» Objects are represented as a cloud of n points in a
multidimensional space with an axis for each of the p variables

» The centroid of the points is defined by the mean of each variable

» The variance of each variable is the average squared deviation of
Its n values around the mean of that variable.

1 9 o \2
v n-16}(x' Xi)

m=1



Geometric Interpretation of PCA

 degree to which the variables are linearly correlated is represented
by their covariances.

5= LA DT

Covariance of
variables i and |

Value of Mean of Value of Mean of
Sum over all variable I o0 variable variable |
n observations for observation m For observation m



Geometric Interpretation of PCA

* Objective of PCA is to rotate the axes of this p-dimensional space
to new positions (principal axes) that have the following
properties:

— ordered such that principal axis 1 has the highest variance,
axis 2 has the next highest variance, .... , and axis p has the
lowest variance

— covariance among each pair of the principal axes is zero (the
principal axes are uncorrelated).

Identifying alternative axes which can explain maximum variance in data and forming new
variables with respect to new set of axes




Example of PCA

Observation X1 X2 Mean_corX1(Mean_corX2

1 16 8 8 5

2 12 10 4 7

3 13 6 5 3

4 11 2 3 -1

5 10 8 2 5

6 9 -1 1 -4

7 8 4 0 1

8 7 6 -1 3

9 5 -3 -3 -6

10 3 -1 -5 -4

11 2 -3 -6 -6

12 0 0 -8 -3
Mean 8 3 0 0

Variance 23.09 21.09 23.09 21.09

Total Variance: 44.182
Variance of X1 is 23.09
Variance of X2 is 21.09
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Example of PCA

Total Variance: 44.182
Variance of X1 is How do we maximize it?
Variance of X2 is 21.09

Any observation on transformed axis

1% = ; 6
X COS O xx1+sin® xx2 X2 .

-10 -8 -6 -4 27 0 2

10



Rotation of Axis X1

Angle between X1 and

Variance of

% of variance

X1*(theta) X1* explained
0 23.091 52.26336517
10 28.659 64.86578245
20 33.434 75.67335114
30 36.841 83.38463628
40 38.469 87.06939478
43.261 38.576 87.31157485
50 38.122 86.28400706
60 35.841 81.12127111
70 31.902 72.2058757
80 26.779 60.61065592
90 21.091 47.73663483




Example of PCA

Any observation on transformed axis

x1* =cos @ xx1 +sinO x x2 X2*
) 8
\
\\ X2 v
v ° X1*
\ v v -
Any observation on transformed axis R -
. -
X2* =-sin @ x x1 + cosO x x2 \:9 =
-
v _o*
\Y .-
oA~ 0
-10 -8 -6 -4 27 0 2 4 6 8 10
_ - - \ L
- 24\ X1
s’ \
o . - \
” \
\
w w -6 \
Original Rotated Axes \
\
Variance X1 23.091 38.576 -8 \
Variance X2 21.09 5.61

Total Variance: ¢4.182 . . . .
Total variance did not change: Information content remains
same



Example of PCA

Any observation on transformed axis

10

x1* =cos @ xx1 +sin @ x x2 X2*
\ 8 -
\
\ X2
A 6 -
. L
\ -
Any observation on transformed axis S 4
x2* = -sin @ x x1 + cosO x x2 \“fe e-
v _ -
\ -
| | _gaes -~ 6
-10 8 6 -4 2~ A 2 &
-
New axes L 21\ X1
-
X1* and X2* are called ¢ .- \
e e - L 44 @\
Principal Components - \
\
L L 6 - \
Values x1* and x2* are .

called principal
component scores
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PCA-Dimension reduction

In the example: For reducing dimension, lets just use only first
transformed axes X1*

Total variance explained = 38.576 (87.3%)
We lose variance =5.76 (12.68%)

Representing data in lower dimensional space compared to
original dimension is called dimensional reduction




Geometrically

* Objective of PCA Is to identify p new sets of orthogonal axes
for p variables such that:

1.

Each new variable is linear combination of original
variables

The first new variable explains maximum variance in the
data

Second new variable accounts for the maximum variance
that is not explained by the first variable

Third new variable: max variance not explained by first
two variable and so on....

The pth new variable accounts for the variance that has
not been explained by the p-1 variables




PCA

» Principal Components
» Principal component score

» Loadings: Correlation between Principal component (new
variable e.g., X1* and X2*) and original variable (X1, X2)

» Loading provides information on how influential was an
original variable in forming new variable

» Higher loading, more influential the variable is in forming the
new variable




Analytical Approach

* If there are p variables, the interest Is to form p
linear combinations:

Y1 = Wy Xy + WX, + oo, + WX
Yo =Wy Xy + WooXy +.ooenn, + WX
Yp = WpgXy + WX + ., W0 X

where y,, y, .....y, are the p principal components
and w;; Is the welght of the jth variable for the ith
prlnC|paI component.



Analytical approach

* Weights w;; are estimated such that:

1. The first principal component y1 accounts for maximum variance in
the data, the second component accounts for maximum variance in
data not explained by first component and so on...

2. Wy PHWpAt w2 =1 =1 p

3. WiyWip + WipWjpt..... Wipw, =0 fori#

« #21s necessary Is used to fix the scale of new variables
as It Is possible to increase the variance of a linear
combination by change the scale of weights

« # 31s to ensure new axes are orthogonal to each other




The Algebra of PCA

 First step iIs to calculate variance-covariance matrix S (correlation
R) using all the p variables

 Such matrix will be square and symmetric
 Diagonals are the variances and off-diagonals are the covariances
* In Matrix term:
S=X’X
Where ° represents transpose

X 1s the nxp data matrix with each variable (mean centered or
standardized)




The Algebra of PCA

« The sum of diagonals of the covariance matrix is called the trace
 Trace represents the total variance in the data

* It is the mean squared Euclidean distance between each
observation and the centroid in p-dimensional space

 Finding the principal axes (principal components) involve
eigenanalysis of the S or R matrix.

* The eigenvalues of S or R matrix are solutions to characteristics
equation

IS—All=0
(S-A)U =0
Where A Is eigen value, U is eigen vector




The Algebra of PCA

* The eigen values Ay, A,.... A, are the variances of the coordinates
In each principal component axis

« The sum of all p eigen values equal to trace of S (the sum of the
variances of all of the original variables)

« Each eigen vector consists of p values which represent the
“contribution” of each variable to the principal component axis

 Eigen vectors are uncorrelated (orthogonal)
* Principal Scores can be written as

Where y Is the n x k matrix of Principal component (PC) scores

X Is the n X p centered data matrix U is the p x k matrix of eigen
vector




The Algebra of PCA

The variance of the scores on each PC axis Is equal to the
corresponding eigen value for that axis

The eigen value for an axis k represents the amount of variance
explained by the k" axis

The variance-covariance matrix of S for PCs will have all off-
diagonal elements 0 and diagonal elements (variance) are the
eigen values A extracted using equation |[S—AlI| =0




Covariance vs Correlation matrix

Covariance Is used only if all the variables are in the same unit

Drawback of using covariance is that principal components
will be dominated with variables with high variances

This i1ssue can be overcome by standardizing each variables to
unit variance and zero

Covariance matrix calculation using standardized variables
give correlation matrix




How do we perform PCA?

* In R there are two commands
1. prcomp (SVD approach for R/S matrix decomposition)
2. Princomp (eigen vector based R/S matrix decompositon)




Interpreting PCA outputs

Input Data

Observation X1 X2 Mean_corX1|(Mean_corX2

1 16 8 8 5

2 12 10 4 7

3 13 6 5 3

4 11 2 3 -1

5 10 8 2 5

6 9 -1 1 -4

7 8 4 0 1

8 7 6 -1 3

9 5 -3 -3 -6

10 3 -1 -5 -4

11 2 -3 -6 -6

12 0 0 -8 -3

Mean 8 3 0 0

Variance 23.09 21.09 23.09 21.09




Results

1. Simple Statistics: Mean and Standard Deviation for original variables

2. Variance Covariance Matrix

3a. Eigenvalues

3b. Eigen vectors

4. Table of original variables and PCs with simple statistics

5. Loadings

6. Principal Components




@SIMLE STATISTICS @:ovmms

X1 X2 X3 X2

MEAN 8.00000 3.00000 X1 23.0%0351 16.45355
ST DEV 4.80530 4.59248 X2 16.45455 21.08091

TOTAL VARIANCE=~44.18182

@ EIGENVALUE DIFFERENCE PROPORTION CUMULATIVE
PRINI 38.5758 32,9698 0.873115 D0.87312

PRINZ 5.6060 ' 0.12688%  1.00000

(::b:csNVtCToms (:)vxnxasnz N MEAN ~ STD DEV -
PRIN1 PRIN2 X1 12 8.000000  4.BO5300 -

X1 0.728238 =~.685324 X2 12 3.000000  4.5924B4

X2 0.685324 0.728238 PRIN1 12 -8.6978-16 6.210943

PRIN2 12 90.000000 2.367700

@mso« CORRELATION COEFFICIENTS

: X1 x2 PRINL PRIN2
X1 1.00000 D.74562 D.94126 -0.33768
x2 # 0,74562 1.00000 0.92684 0.37545
PRINL -0,94126 0.92684 1.00000 0.00000

PRINZ  =0.33768 0.37%4% 0.0000¢ 1.00000

(::)oas X1 X2 PRINI  DRINZ
116 8 9.2525 -1.8414
12 10 7.7102 2.3564
13 & 5.6972 -1.2419
11 2 1.4994 -2.7842
10 8 4.8831 2.270%
-1 ~2.0131 -3.5983
4 0.6853 0.7282
6 1.3277 2.8700 -
-§.2967 -2.3135
-1 -6.3825 0.5137
-3 -8,.4014 -0.2575
D -7.8819 3.297%

AN e g
|
w
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PCA on time series of monthly anomaly of lower tropospheric temperature (1982-2007)
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Believe me..! P value greater than
0.05 indicates chance of your
drowning is not significant.




