Introduction to Python, Jupyter
Notebook, NumPy and pandas

Manmeet Singh

Scientist C
Centre for Climate Change Research
Indian Institute of Tropical Meteorology, Pune, India

Adapted from High Performance Scientific Computing , AMath 483/583 Class Notes, Spring Quarter, 2013,
University of Washington

Python is an object oriented general-purpose language

Advantages:

» Can be used interactively from a Python shell (similar to Matlab)
» Can also write scripts to execute from Unix shell

» Little overhead to start programming

» Powerful modern language

* Many modules are available for specialized work

» Good graphics and visualization modules

» Easy to combine with other languages (e.g. Fortran)

» Open source and runs on all platforms

Page = 2

Python

Disadvantage: Can be slow to do certain things, such as looping over
arrays.

Code is interpreted rather than compiled
Need to use suitable modules (e.g. NumPy) for speed.

Can easily create custom modules from compiled code written in Fortran,
C, etc.

Can also use extensions such as Cython that makes it easier to mix Python
with C code that will be compiled.

Python is often used for high-level scripts that e.g., download data from the
web, run a set of experiments, collate and plot results.

Page = 3

Object-oriented language

Nearly everything in Python is an object of some class.

The class description tells what data the object holds (attributes) and what
operations (methods or functions) are defined to interact with the object.

Every “variable” is really just a pointer to some object. You can reset it to
point to some other object at will.

So variables don't have “type” (e.g. integer, float, string). (But the objects
they currently point to do.)

Page - 4

Object-oriented language

>>> x = 3.4

>>> print id(x), type (x)

id() returns memory address
8645588 <type ‘float’>

>>> x = b

>>> print id(x), type (x)
8401752 <type ‘int’>

>>> x = [4,5,0]

>>> print id(x), type (x)
1819752 <type ‘list’>

>>> x = [7,8,9]

>>> print id(x), type (x)
1843808 <type ‘list’> Ppage-s

Object-oriented language

>>> x = [7,8,9]

>>> print id(x), type(x)

1843808 <type ‘list’>

>>> x.append (10)

>>> %

(7, 8, 9, 10]

>>> print 1d(x), type (x)

1843808 <type ‘list’>

Note: Object of type ’list’ has a method "append’ that changes the object.
A list is a mutable object.

Page = 6

Object-oriented language

>>> x = [1,2,3]
>>> print 1d(x), X
1845768 [1, 2, 3]
>>> y = X

>>> print 1d(y), vV
1845768 [1, 2, 3]
>>> y.append (27)
>>> vy

(1, 2, 3, 27]

>>> X

(1, 2, 3, 27]

Note: x and y point to the same object!

Page =7

Making a copy

>>> x = [1,2,3]

>>> print 1d(x), X

1845768 [1, 2, 3]

>>> y = list(x) # creates new list object
>>> print 1d(y), vV

1846488 [1, 2, 3]
>>> y.append (27)
>>> vy

Page = 8

Integers and floats are immutable

If type (x) in [int, float],thensettingy = x
creates a new object v pointing to a new location.
>>> x = 3.4

>>> print 1d(x), X

8645588 3.4

>>> vy = x

>>> print 1d(y), vy

8645572 3.4

>>> vy = y+1

>>> print 1d(y), Vy

8645572 4.4

>>> print 1d(x), X

8645588 3.4

Page = 9

The elements of a list can be any objects

(need not be same type):

>>> L = [3, 4.5, "abc’,
Indexing starts at O:

>>> L[0]

3

>>> L[2]

"abc’

>>> L[3]

[1, 2]

>>> L [3][0] # element 0 of L[3]

1

[1,2]]

Page = 10

Lists have several built-in methods, e.g. append, insert, sort, pop, reverse,
remove, efc.

>>> 1L = [3, 4.5, "abc’, [1,2]]
>>> L2 = L.pop(2)

>>> 1.2

"abc’

>>> L

(3, 4.5, [1, 2]]

Note: L still points to the same object, but it has changed.

In IPython: Type L. followed by Tab to see all attributes and methods.

Page = 11

Lists and tuples

>>> 1L = [3, 4.5, "abc’]
>>> L[0] = "xy’
>>> T,

["xy’, 4.5, "abc’]
Atuple is like a list but is immutable:

>>> T = (3, 4.5, "abc’)
>>> T[0]

3

>>> T[0] = "xy’

Traceback (most recent call last):
File “<stdin>", line 1, in <module>
TypeError: 'tuple’ object does not support item

assignment Page - 12

Python modules

When you start Python it has a few basic built-in types and functions.
To do something fancier you will probably import modules.
Example: to use square root function:

>>> from numpy 1mport sgrt

>>> sqgrt(2.)
1.4142135623730951

Page = 13

Python modules

When type import modname, Python looks on its search path for the file
modname.py.

You can add more directories using the Unix environment variable
PYTHONPATH.

Or, in Python, using the sys module:
>>> 1import sys
>>> gsys.path # returns list of directories
[’’, "/usr/bin’,]
>>> sys.path.append (' newdirectory’)

The empty string ” in the search path means it looks first in the current
directory.

Page = 14

Python modules

Different ways to import:
>>> from numpy 1import sqgrt
>>> sqrt(2.)
1.4142135623730951
>>> from numpy 1import *
>>> sqgrt(2.)
1.4142135623730951
>>> import numpy
>>> numpy.sqgrt(2.)
1.4142135623730951
>>> import numpy as np
>>> np.sqgrt(2.)
1.4142135623730951

Page = 15

Graphics and Visualization

Many tools are available for plotting numerical results.

Some open source Python options:
» matplotlib for 1d plots and 2d plots (e.g. pseudocolor, contour, quiver)
» Mayavi for 3d plots (curves, surfaces, vector fields)

Mayavi is easiest to get going by installing the Enthought Python
Distribution (EPD), which is available for many platforms. (Also includes
NumPy, SciPy, matplotlib.)

Page = 16

Graphics and Visualization

Open source packages developed by National Labs...

« Vislt (https://wci.linl.gov/simulation/computer-codes/visit/)
« ParaView (https://www.paraview.org/)

Harder to get going, but designed for large-scale 3d plots, distributed data,
adaptive mesh refinement results, etc.:

Each have stand-alone GUI and also Python scripting capabilities.

Based on VTK (Visualization Tool Kit, https://vtk.org/).

Page = 17

e Shell is a program where users can type commands.

e With the shell, it's possible to invoke complicated programs like climate
modeling software or simple commands that create an empty directory
with only one line of code.

e The most popular Unix shell is Bash (the Bourne Again SHell —
so-called because it's derived from a shell written by Stephen Bourne).

e Bash is the default shell on most modern implementations of Unix and
in most packages that provide Unix-like tools for Windows.

http://swcarpentry.qgithub.io/shell-novice/

Page = 18

http://swcarpentry.github.io/shell-novice/

Unix Demo - Is, pwd, cd

When the shell is first opened, you are presented with a prompt, indicating
that the shell is waiting for input.

S

Let’s try our first command, which will list the contents of the current
directory

S 1s

Desktop Downloads Movies Pictures

Documents Library Music Public
pwd shows you where you are

S pwd

/home/manmeet

cd is used to change the directory

S cd Documents

Page = 19

Lists aren’t good as numerical arrays

Lists in Python are quite general, can have arbitrary objects as
elements.
Addition and scalar multiplication are defined for lists, but not
what we want for numerical computation, e.g.
Multiplication repeats:

>>> x = [2., 3.]

>>> 2%x

(2.0, 3.0, 2.0, 3.0]
Addition concatenates:

>>> yv = [5., 6.]

>>> x+vy

(2.0, 3.0, 5.0, 6.0]

Page = 20

NumPy module

Instead, use NumPy arrays:
>>> 1mport numpy as np
>>> x = np.array([2., 3.])
>>> 2*x

array ([4., 6.1])

Other operations also apply component-wise:
>>> np.sqgrt (x) * np.cos(x) * x*¥*3
array ([—-4.708164 , -46.29736719])

Note: * is component-wise multiply

Page = 21

NumPy arrays

Unlike lists, all elements of an np.array have the same type
>>> np.array([1l, 2, 3]) # all integers
array ([1l, 2, 31)
>>> np.array([1l, 2, 3.]) # one float
array([1., 2., 3.]) # they’'re all floats!

Can explicitly state desired data type:
>>> x = np.array([1l, 2, 3], dtype=complex)
>>> print x
[1.40.3, 2.40.5, 3.40.79]
>>> (x + 1.3) * 2.7

array([-2.+2.7, -2.44.3, -2.+6.31)

Page = 22

NumPy arrays for vectors and matrices

>>> A = np.array([[1.,2], [3,4], [5,6]])
>>> A
array([[1., 2

[3., 4.]

[5., ©
>>> A.shape
(3, 2)
>>> A.T
array([[1., 3., 5.1,

[2., 4., 6.11)
>>> x = np.array([1l., 1.])
>>> x,T

array ([1., 1.1])

Page = 23

NumPy arrays for vectors and matrices

>>> x
array ([1., 1.1)
>>> np.dot (A,x) # matrix-vector product
array ([3., 7., 11.])
>>> np.dot (A.T, A) # matrix-matrix product
array ([[35., 44.],

[44., 56.11])

Page = 24

NumPy matrices for vectors and matrices

For Linear algebra, may instead want to use numpy.matrix:
>>> A = np.matrix([[1.,2], [3,4], [5,6]])
>>> A
matrix ([[1., 2.1,

[3., 4.1,
[5., ©6.11])

Or, Matlab style (as a string that is converted):
>>> A = np.matrix("1.,2; 3,4; 5,6")
>>> A

matrix ([[1., 2.]

Page = 25

NumPy matrices for vectors and matrices

Note: vectors are handled as matrices with 1 row or column:

>>> x = np.matrix("4.;5.")

>>> X
matrix ([[4.],

[5.11)
>>> x.T
matrix ([[4., 5.]1])
>>> A*X
matrix ([[14.],

[32.],

[50.117)

But note that indexing into x requires two indices:
>>> print x[0,0], x[1,0]
4.0 5.0 Page = 26

Which to use, array or matrix?

For linear algebra matrix may be easier (and more like Matlab),

but vectors need two subscripts!

For most other uses, arrays more natural, e.g.
>>> x = np.linspace (0., 3., 100) # 100 points
>>> y = x**5 - 2.*%sqgrt (x)*cos(x) # 100 values
>>> plot (x,V)

np.linspace returns an array, which is what is needed here.

We will always use arrays.

See http://lwww.scipy.org/NumPy_for Matlab_Users

Page = 27

Rank of an array

The rank of an array is the number of subscripts it takes:

>>> A = np.ones((4,4))

>>> A

array(({ 1., 1., 1., 1.],
[1., 1., 1., 1.1,
(1., 1., 1., 1.1,
[1., 1., 1., 1.]11])

>>> np.rank (A)

2

Warning: This is not the rank of the matrix in the linear algebra
sense (dimension of the column space)!

Page = 28

Rank of an matrix in Linear Algebra

@” iC) Ie rank of a matrix !, Q

Q Al [Books () Images [Videos [E News : More Settings Tools

About 14,10,00,000 results (0.57 seconds)

The maximum number of linearly independent vectors s Y R P
in a matrix is equal to the number of non-zero rows in bR

its row echelon matrix. Therefore, to find the rank of a "";j Ay
matrix, we simply transform the matrix to its row <ty PO
echelon form and count the number of non-zero rows. e U AL

-4 5 6| 913 N

| . , |
B BF 3 D00 0y

Matrix Rank - Stat Trek

https://stattrek.com > matrix-algebra » matrix-rank

& About Featured Snippets B8 Feedback

Page = 29

Rank of an array

Scalars have rank O:
>>> z = np.array(7/.)
>>> 7
array (7.0)
NumPYy arrays of any dimension are supported, e.g. rank 3:

>>> T = np.ones((2,2,2))

>>> T

array ([[[1., 1.1,
[1., 1.171,
[f 1., 1.7,
[1., 1.]111)

Page = 30

Linear algebra with NumPy

>>> A = np.array([[1l., 2.1, [3, 411)
>>> A

array([[1., 2.1,

[3., 4.11)
>>> b = np.dot (A, np.array([8., 9.]))
>>> b

array ([26., 60.])
Now solve Ax = b:

>>> from numpy.llinalg 1mport solve
>>> solve (A, Db)

array ([8., 9.1)

Page = 31

Eigenvalues

>>> from numpy.linalg import eiqg
>>> eig(A) # returns a tuple (evals,evecs)
(array ([-0.37228132, 5.37228132]),
array([[-0.82456484, -0.41597356],
[0.56576746, -0.90937671]11]))
>>> evals, evecs = eig(A) # unpacks tuple
>>> evals
array ([-0.37228132, 5.37228132])
>>> evecs
array([[-0.82456484, -0.41597356],
[0.56576746, -0.9093767111])

Page = 32

Quadrature (numerical integration)

2
Estimate 0 332 d:l? — 8/3

>>> from scipy.integrate import quad
>>> def f(x):

return x**2

>>> quad(f, 0., 2.)

(2.666666666066606067, 2.960594732333751e-14)
returns (value, error estimate).
Other keyword arguments to set error tolerance, for example.

Page = 33

Lambda functions

In the last example, f is so simple we might want to just include
its definition directly in the call to quad.
We can do this with a lambda function:

>>> £ = lambda x: x**2

>>> £ (4)

160
This defines the same f as before. But instead we could do:

>>> quad (lambda x: x**2, 0., 2.)
(2.6606660666666067, 2.960594732333751e-14)

Page = 34

“Main program” in a Python module

Python modules often end with a section that looks like:
if name == " main ":
some code
This code is not executed if the file is imported as a module,
only if it is run as a script, e.g. by...
$ python filename.py
>>> execfile("filename.py")

In[l]: run filename.py

Page = 35

Interactive Python, Indentation & Wrapping Lines

Interactive Python

The IPython shell is generally recommended for interactive work in Python (see http://ipython.org/documentation.himi), but for most examples we'll display
the >>> prompt of the standard Python shell.

Normally multiline Python statements are best written in a text file rather than typing them at the prompt, but some of the short examples below are done at
the prompt If type a line that Python recognizes as an unfinished block, it will give a line starting with three dots, like:

In [3]: |if 152:
print("oops!")
else:
print("this is what we expect")

this is what we expect

Once done with the full command, typing return alone at the ... prompt tells Python we are done and it executes the command.

Indentation

Most computer languages have some form of begin-end structure, or opening and closing braces, or some such thing to clearly delinieate what piece of code
is in a loop. or in different parts of an ii-then-else structure like what's shown above. Good programmers generally also indent their code so it is easier fora
reader to see what is inside a loop, particularly if there are multiple nested loops. But in most languages this is indentation is just a matter of style and the
begin-end structure of the language determines how it is actually interpreted by the computer.

In Python, indentation is everything. There are no begin-end's, only indentation. Everything that is supposed to be at one level of a loop must be indented
to that level. Once the loop is done the indentation must go back out to the previous level. There are some other rules you need to learn, such as that the
“else" in and if-else block like the above has to be indented exactly the same as as the “if". See if_else for more about this.

How many spaces to indent each level is a matter of style, but you must be consistent within a single code. The standard is often 4 spaces.

Wrapping lines

In Python normally each statement is one line, and there is no need (o use separators such as the semicolon used in some languages 1o end a line. One the
other hand you can use a semicolon to put several short statements on a single line, such as:

In [5]: = 5; print(x)

X
5
It is easiest to read codes if you avoid this in most cases

If a line of code is too long o fiton a single line, you can break it into multiple lines by putting a backslash at the end of a line:

Page = 36

Comments and Strings

If a line of code is too long to fit on a single line, you can break it into multiple lines by putting a backslash at the end of a line:

In [6]: y =3 +\

4

In [7): [y

out[7]: 7
Comments

Anything following a # in a line is ignored as a comment (unless of course the # appears in a string):
In [8]: s = "This # is part of the string" # this is a comment

In [9]: s
Out[9]: 'This # is part of the string'

There is another form of comment, the docstring, discussed below following an introduction to strings.

Strings

Strings are specified using either single or double quotes:

In [10]: s 'some text'

"some text"

are the same. This is useful if you want strings that themselves contain quotes of a different type.

You can also use triple double quotes, which have the advantage that they such strings can span multiple lines:

In [11]: s = “""Note that a ' doesn't end
. this string and that it spans two lines"""

In [12]: s

Out[12]: "Note that a ' doesn't end\nthis string and that it spans two lines"

Page = 37

Docstrings, Python scripts and Python objects

In [13]:

In [14]:

print(s)
Note that a ' doesn't end
this string and that it spans two lines

When it prints, the carriage return at the end of the line show up as “n”". This is what is actually stored. When we “print s” it gets printed as a carriage retum
again.

You can put “n" in your strings as another way to break lines:

print("This spans \n two lines")

This spans
two lines

Docstrings

Often the first thing you will see in a Python script or module, or in a function or class defined in a module, is a brief description that is enclosed in triple
quotes. Although ordinarily this would just be a string, in this special position it is interpreted by Python as a comment and is not part of the code. It is called
the docstring because it is part of the documentation and some Python tools automatcally use the docstring in various ways. See ipython for one example.
Also the documentation formatting program Sphinx that is used to create these class notes can automatically take a Python madule and create html or latex
documentation for it by using the docstrings, the original purpose for which Sphinx was developed. See Sphinx documentation for more about this.

It's a good idea to get in the habit of putting a docstring at the top of every Python file and function you write.

Running Python scripts

Most Python programs are written in text files ending with the .py extension. Some of these are simple scripts that are just a set of Python instructions to be
executed, the same things you might type at the >>> prompt but collected in a file (which makes it much easier to modify or reuse later). Such a script can be
run at the Unix command line simply by typing “python” followed by the file name.

See Python scripts and modules for some examples. The section Importing modules also contains important information on how to ‘import™ modules, and
how to set the path of directories that are searched for modules when you try to import a module.

Python objects

Python is an object-oriented language, which just means that virtually everything you encounter in Python (variables, functions, modules, etc.) is an object of
some class. There are many classes of objects built into Python and in this course we will primarily be using these pre-defined classes. For large-scale
programming projects you would probably define some new classes, which is easy to do. (Maybe an example to come...)

The type command can be used to reveal the type of an object:

Page = 38

Docstrings, Python scripts and Python objects

In [15]:

In [16]:

In [17]:

In [18]:

In [19]:

In [20]:

In [21]:
Outf21]:

In [22]:
outf22]:

import numpy as np
print(type(np))

<class 'module'>

print(type(np.pi))

<class 'float'>

print(type(np.cos))

<class 'numpy.ufunc's>

We see that np is a module, np.pi is a floating point real number, and np.cos is of a special class that's defined in the numpy module.

The linspace command creates a numerical array that is also a special numpy class:
x = np.linspace(0, 5, 6)

print(x)
[e. 1. 2, 3. 4. 5.]

print(type(x))

<class 'numpy.ndarray'>

Objects of a particular class generally have certain operations that are defined on them as part of the class definition. For example, NumPy numerical arrays
have a max method defined, which we can use on x in one of two ways:

np.max(x)

5.0

x.max()

5.0

The first way applies the method max defined in the numpy module to x. The second way uses the fact that x, by virtue of being of type numpy.ndarray,
automatically has a max method which can be invoked (on itself) by calling the function x.max() with no argument. Which way is better depends in part on
what you're doing.

Page = 39

Declaring Variables

Here’s another example:
In [23]:|L= [0 1, 2]

In [24]: type(L)
out[24]: 1list

In [25]: L.append(4)

In [26]: L
out[26]: [e, 1, 2, 4]

L is a list (a standard Python class) and so has a method append that can be used to append an item to the end of the list.

Declaring variables?

In many languages, such as Fortran, you must generally declare variables before you can use them and once you've specified that x is a real number, say,
that is the only type of things you can store in x, and a statement like x = *string’ would not be allowed.

In Python you don’t declare variables, you can just type, for example:
In [27]): x = 3.4

In [28]: 2#*x
out[28]: 6.8

In [30]: x = 'string'

In [31]: [2%x

Out[31]: ‘stringstring’
In [32]: x = [4, 5, 6]

In [33]: |2*x
out[33]: [4, 5, 6, 4, 5, 6]

Page = 40

In [34]:

In [35]:
Oout[35]:

In [36]:
Qut[36]:

I [37]):

In [39]:

Here x is first used for a real number, then for a character string, then for a list. Note, by the way, that multiplication behaves differently for objects of different
type (which has been specified as part of the definition of each class of objects).

In Fortran if you declare x to be a real variable then it sets aside a particular 8 bytes of memory for x, enough to hold one floating point number. There’s no

way to store 6 characters or a list of 3 integers in these 8 bytes.

In Python it is often better to think of x as simply being a pointer that points to some object. When you type “x = 3.4" Python creates an object of type float
holding one real number and points x to that. When you type x = 'string’ it creates a new object of type str and now points x to that, and so on.

Lists

We have already seen lists in the example above.

Note that indexing in Python always starts at 0:

L = [4,5,6]

Lel
4

L[1]

Elements of a list need not all have the same type. For example, here's a list with 5 elements:

E =[5, 2.3,

‘abc', [4,'b'], np.cos]

Here's a way to see what each element of the list is, and its type:

for index,value in enumerate(L):
print('L[%s] is %16s

L[e] is
L[1] is
L[2] is
L[3] is
L[4] is

5

2.3

abc

(4, 'b']
<ufunc 'cos'>

%s' % (index,value,type(value)))

<class
<class
<class
<class
<class

int'>
'float'>
'str'>

'list'>
'numpy.ufunc'>

Note that L[3] is itself a list containing an integer and a string and that L[4] is a function.

Page = 41

Copying Objects

In [41]:

In [42]:
In [43]:

In [44]:
out[44]:

In [45]:

In [47]:
out[47]:

In [48]:
Out[48]:

One nice feature of Python is that you can also index backwards from the end: since L[0] is the first item, L[-1] is what you get going one to the left of this,
and wrapping around (periodic boundary conditions in math terms):

for index im [-1, -2, -3, -4, -5]:
print('L[%s] is %16s' % (index, L[index]))

L[-1] is <ufunc ‘cos'>

L[-2] is [4, 'b']
L[-3] is abc
L[-4] is 2.3
L[-5] is 5

In particular, L[-1] always refers 1o the last item in list L.

Copying objects

One implication of the fact that variables are just pointers to objects is that two names can point to the same object, which can sometmes cause confusion.
Consider this example:

x = [4,5,6]
y = x

y

[4, 5, 6]

y.append(9)

¥
(4, 5, 6, 91

So far nothing too surprising. We initialized y to be x and then we appended another list elemernt to y. But take a look at x:

X

4,5, 6, 9]

We didn't really appand 9 to y, we appended it to the object y points to, which is the same object x points to!
Failing to pay attenton to this sort of thing can lead to programming nightmares.

What if we really want y to be a different object that happens to be Initialized by copying X? We can do this by:

Page = 42

Copying Objects

In [49]:
In [50]:

In [51]:
Out[51]:

In [52]:

In [53]:
out[53]:

In [54]:
Out[54]:

In [55]:

In [56]:

Out[56]:

In [57]:
out[57]:

[4,5,6]

x
"

y = list(x)
y

[4, 5, 6]
y.append(9)

y
(4, 5, 6, 9]

X

[4, 5, 6]

This is what we want. Here lisi(x) creates a new object, that is a list, using the elements of the list x to initialize it, and y points to this new object. Changing
this object doesn't change the one x paintad to.

You could also use the copy module, which works in general for any objects:

import copy
y = copy.copy(x)

Sometimes itis more complicated, if the list x itself cantains other objects. See htip://docs.python.arg/library/copy.html for more information.

There are some objects that cannot be changed once created (immutable objects, as described further below). In particular, for floats and integers, you can
do things lke:

i
“ X w

P Cww x

Here changing y did not change x, luckily. We don't have to explicitly make a copy of x for y in this case. If we did, writing any sort of numerical code in
Python would be a nightmare.

Page = 43

Mutable and

In [58]:

In [59]:

In [60]:
out[60]:

In [61]:
Out[61]:

In [62]:

In [66]:
Out[66]:

Immutable objects

We didn't because the command:
y = y+1

above is not changing the object y points to, instead itis creating a new object that y now points to, while x still points to the old object.

For more about built-in data types in Python, see http://docs.python.org/release/2.5.2/ref/types.html.

Mutable and Immutable objects

Some objects can be changed after they have been created and others cannot be. Understanding the difference is key to understanding why the examples
above concerning copying objects behave as they do.

A list is a mutable object. The statement:

ahove created an object that x points to, and the data held in this object can be changed without having to create a new object. The statement
y =
peints y at the same object, and since it can be changed, any change will affect the object itself and be seen whether we access it using the pointer x ory.

We can check this by:

id(x)
140418456523464

id(y)
140417799512208

The id function just returns the location in memory where the object is stored. If you do something like x[0] = 1, you will find that the objects' id's have not
changed, they both point to the same object, but the data stored in the object has changed.

Some data types correspond to immutable objects that, once created, cannot be changed. Integers, floats, and strings are immutable:
s = "This is a string"

s[0]

Page = 44

Mutable and Immutable objects

In [64]: s[@6] = 'b'

TypeError Traceback (most recent call last)
<ipython-input-64-502f3bf853al> in >
--> 1 s[8] = 'b’

TypeError: 'str' object does not support item assignment

In [67]: 1id(s)
0ut[67]: 140417799495088

In [68]: s = "New string"

In [69]: id(s)

0ut[69]: 140417799516592
What happened to the old object? It depends on whether any other variable was pointing to it. If not, as in the example above, then Python's garbage
collection would recognize it's no longer needed and free up the memory for other uses. But if any other variable is still pointing to it, the object will still exist,
eg.

In [70]: s2=s

In [72]: id(s2) # same object as s above

0ut[72]: 140417799516592
In [73]: |s = "Yet another string" # creates a new object

In [74]: id(s) # s now points to new object

0ut[74]: 140417799494512

In [76]: id(s2) # s2 still points to the old one
Out[76]: 140417799516592

Page = 45

Tuples and lterators

Tuples

We have seen that lists are mutable. For some purposes we need something like a list but that is immuatable (e.g. for dictionary keys, see below). A tuple is
like a list but defined with parentheses (..) rather than square brackets [..J:

In [77]: |t = (4,5,6)

In [78]: t[0]
out[78]: 4

In [79]: t[e] =9

TypeError Traceback (most recent call last)
<ipython-input-79-9a6f3bfcelf7> in ‘
> 1%[8] =
TypeError: 'tuple' object does not support item assignment
Iterators

We often want to iterate over a set of things. In Python there are many ways to do this, and it often takes the form:

In []1: for A in B:
do something, probably involving the current A

In this construct B is any Python object that is iterable, meaning it has a built-in way (when B's class was defined) of starting with one thing in B and
progressing through the contents of B in some hopefully logical order.

Lists and tuples are iterable in the obvious way: we step through it one element at a time starting at the beginning:
In [83]: for i im [3, 7, 'D']:
print("i is now ", 1)
iis now 3

iis now 7
iis now b

Page = 46

range and enumerate

range

In numerical work we often want [0 have | startat 0 and go up to some number N, stepping by one. We cbviously don't want to have to consiruct the list [0, 1,
2, 3, ..., N] by typing all the numbers when N Is large, so Python has a way of doing this:

In [87]: range(7)
0ut[87]: range(n, 7)

NOTE: The last element s 6, not 7. The list has 7 elements but starts by default at 0, just as Python indexing does. This makes it convenient for doing things
like:

In [88]: |L = ['a’', 8, 12]

In [89]: for i in range(len(L)):

printliy= %, o LEI=" LD
i= 0 L[i]l= a
i= 1 L[i]l= 8
i= 2 L[l = 12

Note that len(L) rewrns the length of the list, so range(len{L)) is always a list of all the valid indices for the list L.

enumerate

Another way to do this is:

In [91]: for i,value in enumerate(L):

print("i = *,i, * L[1i] = ",value)
i= 0 L[i] = a
i= 1 L[i] = 8
i= 2 L[i] = 12

range can be used with more arguments, for example if you want 1o start at 2 and step by 3 up to 20:

In [94]: range(2,20,3)
Out[94]: range(2, 20, 3)

Note that this doesn't go up to 20. Just like range(7) stops at 6, this list stops one item short of what you might expect.

NumPy has a linspace command that behaves like Matlab's, which is sometimes more useful in numerical work, e.g.:

Page = 47

In [95]:
Qut[95]:

np.linspace(2,20,7)

array(l[.2:; 5u; 8:; 11,145 173; 204])

This returns a NumPy array with 7 equally spaced points between 2 and 20, including the endpoints. Note that the elements are floats, not integers. You
could use this as an iterator too.

If you plan to iterate over a lot of values, say 1 million, it may be inefficient to generate a list object with 1 million elements using range. So there is another
option called xrange, that does the iteration you want without explicitly creating and storing the list:

for i in xrange(1000000):

do something

does what we want.

Page = 48

Python scripts and modules

Python scripts and modules

A Python script is a collection of commands in a file designed to be executed like a program. The file can of course contain functions and import various
modules, but the idea is that it will be run or executed from the command line or from within a Python interactive shell to perform a specific task. Often a
script first contains a set of function definitions and then has the main program that might call the functions.

scriptl.py

In [96] : non
Sample script to print values of a function at a few points.

import numpy as np
def f(x):

A quadratic function.

o

Y = X241
return y
print(" X f(x)")

for x in np.linspace(6,4,3):
print("%8.3f %8.37" % (x, f(x)))

X f(x)
0.000 1.000
2.000 5.000

4.000 17.000

The main program starts with the print statement.
There are several ways to run a script contained in a file.

At the Unix prompt:

$ python scriptl.py

X f(x)
0.000 1.000
2.000 5.000

4.000 17.000

Page = 49

In [101]:

In [102]:

In [103]:

In [104]:
Out[104]:

In [105]:
Out[1085]:

Python scripts and modules

From within Python:

execlopen("scriptl.py").read())

X f(x)
0.000 1.000
2.000 5.000

4.000 17.000

From within IPython, using either execfile as above, or run:

run scriptl.py

X f(x)
0.000 1.000
2.000 5.000

4.000 17.000

Or, you can import the file as a module (see Importing modules below for more about this):

import scriptl

X f(x)
0.000 1.000
2.000 5.000

4.000 17.000

Note that this also gives the same output. Whenever a module is imported, any statements that are in the main body of the module are executed when it is
imported. In addition, any variables or functions defined in the file are available as attributes of the module, e.qg.,

scriptl.f(4)
17.0

scriptl.np

<module 'numpy' from '/home/manmeet/anaconda3/envs/py35/1lib/python3.6/site-packages/numpy/ init .py'>

Page = 50

Python scripts and modules

Note there are some differences between executing the script and importing it. When it is executed as a script, it is as if the commands were typed at the
command line. Hence:

In [106]: exec{open("scriptl.py").read())

X f(x)
0.000 1.000
2.000 5.000

4.000 17.000

In [107]: f

0ut[107]: <function _ main_ .f(x)>

In [108]: np
Out[168]: <module 'numpy' from '/home/manmeet/anaconda3/envs/py35/lib/python3.6/site-packages/numpy/ init .py'>

In this case f and np are in the namespace of the interactive session as if we had defined them at the prompt.

Page = 51

Writing scripts for ease of importing

Writing scripts for ease of importing

The script used above as an example contains a function f(x) that we might want to be able to import without necessarily running the main program. This
can be arranged by modifying the script as follows:

script2.py

In [109]: | "“*
Sample script to print values of a function at a few points.
The printing is only done if the file is executed as a script, not if it is
imported as a module.

import numpy as np

def f(x):

A quadratic function.
y = x¥%2 4 1,
return y

def print table():
print(" X f(x)")
for x in np.linspace(0,4,3):
print("s8.3f %8.3f" % (x, f(x)))

if npame == " main_":
print table()
X f(x)
0.000 1.000
2.000 5.000

4.000 17.000

When a file is imported or executed, an attribute name is automatically set, and has the value main only if the file is executed as a script, not if it is imported
as a module. So we see the following behavior:

$ python script2.py

X f(x)

0.000 1.000

2.000 5.000

4.000 17.000

Page = 52

In [110]:

In [112]:
Out[112]:

In [113]:
Out[113]:

In [114]:

In [115]:

In [116]:

Reloading Modules

as with script1.py, but:

import script2 # does not print table

script2. name # not ' _main_ '
'script2’

script2.f(4)

17.0

script2.print tablel)

X f(x)
0.000 1.000
2.000 5.000
4.000 17.000

Reloading modules

When you import a module, Python keeps track of the fact that it is imported and if it encounters another statement to import the same module will not
bother to do so again (the list of modules already import is in sys.modules). This is convenient since loading a module can be time consuming. So if you're
debugging a script using execfile or run from an IPython shell, each iime you change it and then re-execute it will not reload numpy, for example.

Sometimes, however, you want to force reloading of a module, in particular if it has changed (e.g. when we are debugging it).

Suppose, for example, that we modify script2.py so that the quadratic function is changed from y = x> + 1 to y = x> + 10. If we make this change and
then try the following (in the same Python session as above, where script2 was already imported as a module):

import script2

script2.print table()

X f(x)
0.000 1.000
2.000 5.000
4.000 17.000

we get the same results as above, even though we changed script2.py.

We have to use the reload command to see the change we want:

Page = 53

Reloading Modules

We have to use the reload command to see the change we want:

In [118]: from importlib import reload
reload(script2)

Out[118]: <module ’script2' from '/home/manmeet/Documents/teri/script2.py'>

In [119]: script2.print tablel)

% f(x)
0.000 10.000
2.000 14.000
4,000 26.000

Page = 54

Command Line Arguments

Command line arguments !

We might want to make this script a bit fancier by adding an optional argument to the print_table function to print a different number of points, rather than the
3 paints shown above.

The next version has this change, and also has a modified version of the main progran that allows the user to specify this value n as a command line
argument:

script3.py

I F1RLYe. [N

Modification of script2.py that allows a command line argument telling how
many points to plot in the table.

Usage example: To print table with 5 values:
python script3 5

import numpy as np

def f(x):

A quadratic function.
y = x**2 .+ 1
return y

def print_table(n=3)
print(" X flx]™)
for x in np.linspace(©,4,n):
print("=8.3f =%8.3f" % (x, f(x)))

if name == " main
What to do 1f the script 1s executed at command line.
Note that sys.argv is a list of the tokens typed at the command line.
import sys
print("sys.argv is ",sys.argv)
if len(sys.argv) > 1:
try:
n = int(sys.argvi1])
print_table(n)
except:
print("**« Error: expect an integer n as the argument")
else:
print_table()

sys.argv is ['/home/manmeet/anaconda3/envs/py35/1ib/python3.6/site-packages/ipykernel launcher.py', '-T', '/home/m

anmeet/.local/share/jupyter/runtime/kernel-a6904343-3430-4b67-a126-523d7a5b7e3c. json"']
#*% Error: expect an integer n as the argument

Page = 55

Command Line Arguments

Note that:

« The function sys.argv from the sys module returns the arguments that were present if the script is executed from the command line. It is a list of strings,
with sys.argv[0] being the name of the script itself, sys.argv[1] being the next thing on the line, etc. (if there were more than one command line
argument, separated by spaces).

» We use int(sys.argv[1]) to convert the argument, if present, from a string to an integer.

« We put this conversion in a try-except block in case the user gives an invalid argument.

Sample output:

$ python script3.py

X f(x)
0.000 1.000
2.000 5.000

4.000 17.000

$ python script3.py 5
X

fx)
0.000 1.000
1.000 2.000
2.000 5.000

3.000 10.000
4.000 17.000

$ python script3.py 5.2
**+* Error: expect an integer n as the argument

Page = 56

Importing modules

In [122]:

In [123]:
Out[123]:

In [124]:
Out[124]:

Importing modules

When Python starts up there are a certain number of basic commands defined along with the general syntax of the language, but most useful things needed
for specific purposes (such as working with webpages, or solving linear systems) are in modules that do not load by default. Otherwise it would take forever
to start up Python, loading lots of things you don't plan to use. So when you start using Python, either interactively or at the top of a script, often the first
thing you do is import one or more modules.

A Python module is often defined simply by grouping a set of parameters and functions together in a single .py file. See Python scripts and modules for
some examples.

Two useful modules are os and sys that help you interact with the operating system and the Python system that is running. These are standard modules
that should be available with any Python implementation, so you should be able to import them at the Python prompt:

import os, sys

Each module contains many different functions and parameters which are the methods and attributes of the module. Here we will only use a couple of
these. The getcwd method of the os module is called to return the “current working directory” (the same thing pwd prints in Unix), e.g.:

os.getcwd()

' /home/manmeet/Documents/teri’

Note that this function is called with no arguments, but you need the open and close parens. If you type “os.getcwd" without these, Python will instead print
what type of object this function is:

os.getcwd

<function posix.getcwd()>

Page = 57

The Python Path

In [125]:

In [126]:

The Python Path

The sys module has an attribute sys.path, a variable that is set by default to the search path for modules. Whenever you perform an import, this is the set of
directories that Python searches through looking for a file by that name (with a .py extension). If you print this, you will see a list of strings, each one of
which is the full path to some directory. Sometimes the first thing in this list is the empty string, which means “the current directory”, so it looks for a module
in your working directory first and if it doesn't find it, searches through the other directories in order:

print(sys.path)
[' /home/manmeet/anaconda3/envs/py35/1ib/python36.zip', '/home/manmeet/anaconda3/envs/py35/1lib/python3.6', '/home/m
anmeet/anaconda3/envs/py35/1lib/python3.6/1ib-dynload', '', '/home/manmeet/anaconda3/envs/py35/1ib/python3.6/site-p

ackages', '/home/manmeet/anaconda3/envs/py35/1lib/python3.6/site-packages/IPython/extensions', '/home/manmeet/.ipyt
hon']

If you try to import a module and it doesn't find a file with this name on the path, then you will get an import error:

import junkname

ModuleNotFoundError Traceback (most recent call last)
<ipython-input-126-477437cb618a> in Ile
--> 1 import junkname

ModuleNotFoundError: No module named 'junkname'

When new Python software such as NumPy or SciPy is installed, the installation script should modify the path appropriately so it can be found. You can also
add to the path if you have your own directory that you want Python to look in, e.g.:

sys.path.append(newdirectory)

will append the directory indicated to the path. To avoid having to do this each time you start Python, you can set a Unix environment variable that is used to
modify the path every time Python is started. First print out the current value of this variable:

$ echo SPYTHONPATH

It will probably be blank unless you've set this before or have installed software that sets this automatically. To append the above example directory to this
path:

Page = 58

Python strings

In [156]:

In [157]:

In [158]:
Qut[158]:

In [159]:

In [160]:
Out[160]:

In [161]:

In [162]:

In [163]:
Out[163]:

Python strings

String formatting

Often you want to construct a string that incorporates the values of some variables. This can be done using the form format % values where format is a string
that describes the desired format and values is a single value or tuple of values that go into various slots in the format.

This is best learned from some examples:

45.6

x
I

s = "The value of x is %s" % X

S

'The value of x is 45.6'
The %s in the format string means to convert x to a string and insert into the format. It will use as few spaces as possible.

s = "The value of x is %21.14e" % X

S

'The value of x is 4.56000000000000e+01"

In the case above, exponential notation is used with 14 digits to the right of the decimal point, put into a field of 21 digits total. (You need at least 7 extra
characters to leave room for a possible minus sign as well as the first digit, the decimal point, and the exponent such as e+01.

y = -0.324876
s = "Now x is %8.3f and y is %8.3f" % (x,y)

S

'Now x is 45.600 and y is -0.325"

In this example, fixed notation is used instead of scientific notation, with 3 digits to the right of the decimal point, in a field 8 characters wide. Note that y has
been rounded.

In the last example, two variables are inserted into the format string.

Page = 59

Other forms of import

'

This appends another directory to the search path already specified (if any). You can repeat this multiple times to add more directories, or put something
like:

export PYTHONPATH=$PYTHONPATH:dirl:dir2:dir3

in your .bashrc file if there are the only 3 personal directories you always want to search.

Other forms of import

If all we want to use from the os module is getcwd, then another option is to do:
In [127]: from os import getcwd

In [128]: getcwd()

Out[128]: '/home/manmeet/Documents/teri’

In this case we only imported one method from the module, not the whole thing. Note that now getcwd is called by just giving the name of the method, not
module.method. The name getcwd is now in our namespace. If we only imported getcwd and tried typing “os.getcwd()" we'd get an error, since it wouldn't
find os in our namespace.

You can rename things when you import them, which is sometimes useful if different modules contain different objects with the same name. For example, to
compare how the sqrt function in the standard Python math module compares to the numpy version:

In [129]: from math import sqrt as sqrtm
from numpy import sqrt as sqrtn

In [130]: sqrtm(-1.)

ValueError Traceback (most recent call last)
<ipython-input-136-4b23e2676c45> in :
--> 1 sqrtm(-1.)

ValueError: math domain error

Page = 60

Other forms of import

In [131]:

Out[131]:

In [132]:

In [133]:

outf133]:

In [134]:
out[134]:

In [135]:

In [136]:
out[136]:

In [1371:
Out[137]:

In [138]:

sqrtn(-1.)
/home/manmeet /anaconda3/envs/py35/lib/python3.6/site-packages/ipykernel launcher.py:1: RuntimeWarning: invalid valu

e encountered in sqrt
""“Entry point for launching an IPython kernel.

nan

The standard function gives an error whereas the numpy version retums nar, a special numpy object representing “Not a Number”.

You can also import 2 module and give it a different name locally. This is particularly useful if you import a module with a long name, but even for numpy
many examples you'll find on the web abbreviate this as np (see Numerics in Python):

import numpy as np
theta = np.linspace(e., 2*np.pL, 5)

theta

array([e. , 1.57079633, 3.14159265, 4.71238898, 6.283185311)

np.cos(theta)

array(l 1.0000000e+06, 6.1232340e-17, -1.6000000e+00, -1.8369702e-16,
1.0000000=+00])

If you don't like having 1o type the moduie name repeatedly you can import just the things you need inta your namespace:

from numpy import pi, linspace, cos
theta = linspace(0., 2*pl, 5)

theta

array([e. , 1.57079633, 3.14159265, 4.71238898, 6.28318531])

cos(theta)

array([1.0090000e+00, 6.1232340e-17, -1.6000000e+00, -1.8369702e-16,
1.0000000e+00])

If you're going to be using lots of things form numpy you might want te import everything into your namespace:
from numpy import *

Then linspace, pi, cos, and several hundred other things will be available without the prefix.

When writing code it is often best to not do this, however, since then it is not clear to the reader (or even to the programmer sometimes) what methods or
attributes are coming from which module if several different modules are being used. (They may define methods with the same names but that do very
different things, for example.)

Page = 61

Python functions

Python functions

Functions are easily defined in Python using def, for example:

In [146]: def myfcn(x):
import numpy as np
y = np.cos(x) * np.exp(x)
return y

In [147]: myfcn(e.)
out[147]: 1.0

In [148]: myfcn(1.)
Out[148]: 1.4686939399158851

As elsewhere in Python, there is no begin-end notation except the indentation. If you are defining a function at the command line as above, you need to input
a blank line to indicate that you are done typing in the function.

Defining functions in modules

Except for very simple functions, you do notwant to type it in at the command line in Python. Normally you want to create a text file containing your function
and import the resulting module into your interactive session.

If you have a file named myfile py for example that contains:
def myfcn(x): import numpy as np y = np.cos(x) * np.exp(x) retum y

and this file is in your Python search path (see python_path), then you can do:
In [150]: from myfile import myfcn

In [151]: myfcn(@.)

Out[151]: 1.0

In [152]: myfcn(1.)

0ut[152]: 1.4686939399158851

In Python a function is an object that can be manipulated like any other object.

Page = 62

Lambda functions

Lambda functions

Some functions can be easily defined in a single line of code, and it is sometimes useful to be able to define a function “on the fly" using “lambda” notation.
To define a function that returns 2*x for any input x, rather than:

In [153]: def f(x):
return 2%x

we could also define f via:
In [154]: f = lambda x: 2*Xx
You can also define functions of more than one variable, e.g.:

In [155]: |g = lambda x,y: 2¥(x+y)

Page = 63

Jupyter Notebook

1}

: Jjupyter notebook_tutorial Last Checkpoint: 5 hours ago (unsaved changes) 3 Logout
File Edit View Insert Cell Kernel Widgets Help Trusted | Python 3 O
B+ & B 2 ¥ MHRin B C » code v | =2
In [160]: s
Out[160]: 'The value of x is 4.56000000000000e+01"

In [161]:

In [162]:

In [163]:
Out[163]:

I F 12

In the case above, exponential notation is used with 14 digits to the right of the decimal point, put into a field of 21 digits total. (You need at least 7 extra
characters to leave room for a possible minus sign as well as the first digit, the decimal point, and the exponent such as e+01.

y = -0.324876

w
I

= "Now x is %8.3f and y is %8.3f" % (x,y)

S

'Now X 1s 45.600 and y is -9.325"

In this example, fixed notation is used instead of scientific notation, with 3 digits to the right of the decimal point, in a field 8 characters wide. Note that y has
been rounded.

In the last example, two variables are inserted into the format string.

Jupyter Notebook

The Jupyter notebook is fairly new and changing rapidly. Install the notebook by
$ pip install jupyter

Then start the notebook via:

$ jupyter-notebook

Page = 64

Jupyter Notebook - File Menu

~ Jupyter notebook_tutorial Lastct 5 hours ago (. @ Logou
File Edit View Insen Cell Kernel Widgets Help Trusted | Pythana
New Notebook » 4 ¥ MWRun B C W cose v =
Qpen.
Make a Copy..
Save as... e value of x 15 4.56008000000080e+61"
Rename,

& case above, exponential notation is used with 14 digits to the right of the decimal point. put into a field of 21 digits total. (You need at least 7 extra

Save and Checkpaint 3 > A = =
acters 0 leave room for a possible minus sign as well as the first digit, the decimal point, and the exponent such as e+01
Revert to Checkpoint »
-0.324876
Print Preview

Boinicad a6 » | Now x Ls %8.3T and y is %8.31" % (x,y)

W x is 45.600 and y is -0.325"
Close and Halt

In this example, fixed notation is used instead of scientrfic notation, with 3 digits 1o the nght of the decimal point. in a field 8 characters wide. Note that y has
been rounded.

In the last example, two variables are inserted into the format string

Jupyter Notebook

The Jupyter notebook is fairly new and changing rapidly. Install the notebook by
$ pip install jupyter

Then start the notebook via:

$ jupyter-notebook

In|[]:

Page = 65

Jupyter Notebook - Kernel

"~ jupyter notebook_tutorial Last Checkpoint 5 hours ago (sutosaved) & oot
Fic EOR View nsat Cell Kemel Widgets Help Trusiod | Pyinon 3 ¢
B+ % @ B 4 ¥ | WRun Interupt v =
Restart
In [1680]: s Restart & Clear Output
Restart & Run All
Out[166]: 'The value of x 1 +81"
Reconnect
In the case above, exp Sl th 14 digits to the right of the decimal paint, put into a field of 21 digits total. (You need at least 7 extra
characters 10 leave 1oc | as well as the first digit, the decimal pomnt. and the exponent such as e+01.
Change kernel »

In [161]: |y = -0.324876
In [162]: s = "Now x is %8.3f and y is %8.3f" % (x,y)

In [163]: s

Out[163]: *Now x is 45.600 and y is -9.325'

In this example, fixed notation is used instead of sclentific notation, with 3 digits to the right of the decimal point, in a field B characters wide. Note that y has
heen rounded

In the last example, wo variables are inserted into the format string.

Jupyter Notebook

The Jupyter notebook is fairly new and changing rapidly. Install the notabook by
$ pip install jupyter

Then start the notebook via:

$ jupyter-notebook

I In[]

Page = 66

Jupyter Notebook - Cell

: jupyter notebook tutorial Last Checkpaint: 5 hours ago (autosaved) a Logout
Flie Edit View Insen call Kernel Widgets Help Trusiod | Pymnon 3 ¢
B+ ¥ 0B 4+ ¢ Run Cells v | =
R Run Cells and Select Below
In [1681: s Ruri Cells and Insert Below
Run Al
Out[168]: 'The value 00e+01"
Run All Abave
In the case ah BTl By 1with 14 digits to the night of the decimal point, put into a field of 21 digits total. (You need at least 7 exira
characters to | T T Tt the decimal pont, and the exponent such as e+01.
Cell Type » | Code
Markdown
In [161]: = -0.324
L 1: |y Current Outputs » Raw NBConvert
In [162]: |'s = "How x AOUR: TRy

In [163]: s
Outl163]: 'Now x is 45.600 and y is -0.325'

In this example, fixed notation is used insiead of scientific notation, with 3 digits to the right of the decimal point, in a field 8 characters wide. Note that y has
been rounded

In the last example, wo variables are inserted into the format string.

Jupyter Notebook

The Jupyter notebook is fairly new and changing rapidly. Install the natebcok by
$ pip install jupyter

Then start the notebook via:

$ jupyter-notebook

In []:

Page = 67

Summary statistics

>>> pima.describe ()

Unnamed: O npreg glu bp skin bmi \
count 332.000000 332.000000 332.000000 332.000000 332.000000 332.000000
mean 166.500000 3.484940 119.259036 71.653614 29.162651 33.239759

std 95.984374 .283634 30.501138 12.799307 9.748068 7.282901
min 1.000000 .000000 65.000000 24.000000 7.000000 19.400000
25% 83.750000 .000000 96.000000 64.000000 22.000000 28.175000

50% 166.500000 .000000 112.000000 72.000000 29.000000 32.900000

75% 249.250000 .000000 136.250000 80.000000 36.000000 37.200000

<~ o NN RO W

max 332.000000 17.000000 197.000000 110.000000 63.000000 67.100000
ped age

count 332.000000 332.000000

mean 0.528389 31.316265
std 0.363278 10.636225
min 0.085000 21.000000
25% 0.266000 23.000000
50% 0.440000 27.000000
75% 0.679250 37.000000
max 2.420000 81.000000

Page = 68

“Python Data Analysis Library”

Mature library for data analysis

Developed from http://pandas.pydata.org/

Main author Wes McKinney has written a 2012 book (McKinney, 2012)

Page = 69

Why Pandas?

A better Numpy: keep track of variable names, better indexing, easier
linear modeling.

A better R: Access to more general programming language.

Page = 70

Get some data from R

Get a standard dataset, Pima, from R:

$ R

> library (MASS)

> write.csv (Pima.te, "pima.csv")
pima.csv now contains comma-separated values:
""", "npreg", "glu", "bp", "skin","bmi", "ped", "age", "type"
"1",6,148,72,35,33.6,0.627,50,"Yes"
"2",1,85,66,29,26.6,0.351,31, "No"
"3",1,89,66,23,28.1,0.167,21,"No"
"4",3,78,50,32,31,0.248,26,"Yes"
"5",2,197,70,45,30.5,0.158,53,"Yes"
"o",5,166,72,19,25.8,0.587,51,"Yes"

Page = 71

Read data with Pandas

Back in Python:

>>> import pandas as pd

>>> pima = pd.read csv("pima.csv")
“pima” is now what Pandas call a DataFrame object. This object keeps
track of both data (numerical as well as text), and column and row
headers.
Lets use the first columns and the index column:

>>> 1mport pandas as pd

>>> pima = pd.read csv("pima.csv", 1index col=0)

Page = 72

Indexing the rows

For example, you can see the first two rows or the three last rows:
>>> pima[0:2]

npreg glu bp skin bmi ped age type

16148 72 35 33.6 0.627 50 Yes

218566 29 26.6 0.351 31 No

>>> pima[-3:]

npreg glu bp skin bmi ped age type

330 10 101 76 48 32.9 0.171 63 No

3315121 72 23 26.2 0.245 30 No

332193 70 31 30.4 0.315 23 No

Notice that this is not an ordinary numerical matrix: We also got text (in
the “type” column) within the “matrix”!

Page = 73

Indexing the columns

See a specific column, here 'bmi’ (body-mass index):
>>> pima["bmi"]

133.6

2 26.6

328.1

431.0

[here | cut out several lines]

330 32.9

331 26.2

332 30.4

Name: bmi, Length: 332

The returned type is another of Pandas Series object, — another of the
fundamental objects in the library:

>>> type(pima["bmi"])

<class ’pandas.core.series.Series’>

Page = 74

Conditional indexing

Get the fat people (those with BMI above 30):
>>> pima.shape

(332, 9)

>>> pima[pima["bmi"]>30].shape

(210, 9)

Row and column conditional indexing
import pandas as pd

from pylab import *

df = pd.DataFrame(rand(10,5), columns=["A", "B", "C", "D", "E"])
df.ix[:, df.ix[0, :]<0.5]

These variations do not work

df[:, df[0]<0.5]

dff:, df[:1]<0.5]

df.ix[:, df[:1]<0.5]

Page = 75

Conditional Indexing

In [164]: import pandas as pd
from pylab import *
df = pd.DataFrame(rand(10,5), columns=["A", "B", "C", "D", "E"])

In [169]: df.ix[:, df.ix[©, :]<0.5]

Out[169]:
A B C E

0.159699 0.123944 0.483297 0.426953
0.083522 0.004395 0.459733 0.604684
0.409187 0.050444 0.014837 0.544117
0.760465 0.759616 0.062657 0.413452
0.851981 0.696130 0.061952 0.562658
0278712 0.249822 0.231442 0.672320
0.713089 0562738 0.585630 0.897577
0.204244 0539397 0.031190 0.702550
0.929349 0.096289 0.755836 0.047888

O 00 ~N O s W N = O

0.266317 0.798710 0.603293 0.911597

Page = 76

Constructing a DataFrame

In [182]: # intialise data of lists.
data = {'Name':['Tom', 'nick', ‘'krish', 'jack'], 'Age':[26, 21, 19, 18]}

Create DataFrame
df = pd.DataFrame(data)

Print the output.

df
out[182]:
Name Age
0 Tom 20
1 nick 21
2 kish 19
3 jack 18

Page = 77

Filling missing data

In [183]: # importing pandas as pd
import pandas as pd

importing numpy as np
import numpy as np

dictionary of lists

dict = {'First Score':[100, 90, np.nan, 95],
‘Second Score': [30, 45, 56, np.nan],
'Third Score':[np.nan, 40, 8@, 98]}

creating a dataframe from dictionary
df = pd.DataFrame(dict)

filling missing value using fillna()
df.fillpa(e)

Qut[183]:
First Score Second Score Third Score
0 100.0 30.0 0.0
1 90.0 45.0 40.0
2 0.0 56.0 80.0
3 95.0 0.0 98.0

Page = 78

More information

http://pandas.pydata.org/
The canonical book “Python for data analysis” (McKinney, 2012).

Will it Python?: Porting R projects to Python, exemplified through scripts
from Machine Learning for Hackers (MLFH) by Drew Conway and John
Miles White.

Page = 79

'

Thank you!

Page = 80

