
Introduction to Python, Jupyter
Notebook, NumPy and pandas
Manmeet Singh
Scientist C

Centre for Climate Change Research

Indian Institute of Tropical Meteorology, Pune, India

Adapted from High Performance Scientific Computing , AMath 483/583 Class Notes, Spring Quarter, 2013,
University of Washington

Page ▪ 2

Python

Python is an object oriented general-purpose language
Advantages:
• Can be used interactively from a Python shell (similar to Matlab)
• Can also write scripts to execute from Unix shell
• Little overhead to start programming
• Powerful modern language
• Many modules are available for specialized work
• Good graphics and visualization modules
• Easy to combine with other languages (e.g. Fortran)
• Open source and runs on all platforms

Page ▪ 3

Python

Disadvantage: Can be slow to do certain things, such as looping over
arrays.
Code is interpreted rather than compiled
Need to use suitable modules (e.g. NumPy) for speed.
Can easily create custom modules from compiled code written in Fortran,
C, etc.
Can also use extensions such as Cython that makes it easier to mix Python
with C code that will be compiled.
Python is often used for high-level scripts that e.g., download data from the
web, run a set of experiments, collate and plot results.

Page ▪ 4

Object-oriented language

Nearly everything in Python is an object of some class.
The class description tells what data the object holds (attributes) and what
operations (methods or functions) are defined to interact with the object.

Every “variable” is really just a pointer to some object. You can reset it to
point to some other object at will.
So variables don’t have “type” (e.g. integer, float, string). (But the objects
they currently point to do.)

Page ▪ 5

Object-oriented language

>>> x = 3.4

>>> print id(x), type(x)

id() returns memory address

8645588 <type ‘float’>

>>> x = 5

>>> print id(x), type(x)

8401752 <type ‘int’>

>>> x = [4,5,6]

>>> print id(x), type(x)

1819752 <type ‘list’>

>>> x = [7,8,9]

>>> print id(x), type(x)

1843808 <type ‘list’>

Page ▪ 6

Object-oriented language

>>> x = [7,8,9]

>>> print id(x), type(x)

1843808 <type ‘list’>

>>> x.append(10)

>>> x

[7, 8, 9, 10]

>>> print id(x), type(x)

1843808 <type ‘list’>

Note: Object of type ’list’ has a method ’append’ that changes the object.
A list is a mutable object.

Page ▪ 7

Object-oriented language

>>> x = [1,2,3]

>>> print id(x), x

1845768 [1, 2, 3]

>>> y = x

>>> print id(y), y

1845768 [1, 2, 3]

>>> y.append(27)

>>> y

[1, 2, 3, 27]

>>> x

[1, 2, 3, 27]

Note: x and y point to the same object!

Page ▪ 8

Making a copy

>>> x = [1,2,3]

>>> print id(x), x

1845768 [1, 2, 3]

>>> y = list(x) # creates new list object

>>> print id(y), y

1846488 [1, 2, 3]

>>> y.append(27)

>>> y

[1, 2, 3, 27]

>>> x

[1, 2, 3]

Page ▪ 9

Integers and floats are immutable

If type(x) in [int,float], then setting y = x
creates a new object y pointing to a new location.
>>> x = 3.4

>>> print id(x), x

8645588 3.4

>>> y = x

>>> print id(y), y

8645572 3.4

>>> y = y+1

>>> print id(y), y

8645572 4.4

>>> print id(x), x

8645588 3.4

Page ▪ 10

Lists

The elements of a list can be any objects
(need not be same type):
>>> L = [3, 4.5, ’abc’, [1,2]]

Indexing starts at 0:
>>> L[0]

3

>>> L[2]

’abc’

>>> L[3]

[1, 2]

>>> L[3][0] # element 0 of L[3]

1

Page ▪ 11

Lists

Lists have several built-in methods, e.g. append, insert, sort, pop, reverse,
remove, etc.
>>> L = [3, 4.5, ’abc’, [1,2]]

>>> L2 = L.pop(2)

>>> L2

’abc’

>>> L

[3, 4.5, [1, 2]]

Note: L still points to the same object, but it has changed.
In IPython: Type L. followed by Tab to see all attributes and methods.

Page ▪ 12

Lists and tuples

>>> L = [3, 4.5, ’abc’]

>>> L[0] = ’xy’

>>> L

[’xy’, 4.5, ’abc’]

A tuple is like a list but is immutable:
>>> T = (3, 4.5, ’abc’)

>>> T[0]

3

>>> T[0] = ’xy’

Traceback (most recent call last):

File “<stdin>", line 1, in <module>

TypeError: ’tuple’ object does not support item
assignment

Page ▪ 13

Python modules

When you start Python it has a few basic built-in types and functions.
To do something fancier you will probably import modules.
Example: to use square root function:

>>> from numpy import sqrt

>>> sqrt(2.)

1.4142135623730951

Page ▪ 14

Python modules

When type import modname, Python looks on its search path for the file
modname.py.
You can add more directories using the Unix environment variable
PYTHONPATH.
Or, in Python, using the sys module:

>>> import sys

>>> sys.path # returns list of directories

[’’, ’/usr/bin’,]

>>> sys.path.append(’newdirectory’)

The empty string ” in the search path means it looks first in the current
directory.

Page ▪ 15

Python modules

Different ways to import:
>>> from numpy import sqrt

>>> sqrt(2.)

1.4142135623730951

>>> from numpy import *

>>> sqrt(2.)

1.4142135623730951

>>> import numpy

>>> numpy.sqrt(2.)

1.4142135623730951

>>> import numpy as np

>>> np.sqrt(2.)

1.4142135623730951

Page ▪ 16

Graphics and Visualization

Many tools are available for plotting numerical results.

Some open source Python options:
• matplotlib for 1d plots and 2d plots (e.g. pseudocolor, contour, quiver)
• Mayavi for 3d plots (curves, surfaces, vector fields)

Mayavi is easiest to get going by installing the Enthought Python
Distribution (EPD), which is available for many platforms. (Also includes
NumPy, SciPy, matplotlib.)

Page ▪ 17

Graphics and Visualization

Open source packages developed by National Labs...

• VisIt (https://wci.llnl.gov/simulation/computer-codes/visit/)
• ParaView (https://www.paraview.org/)

Harder to get going, but designed for large-scale 3d plots, distributed data,
adaptive mesh refinement results, etc.:

Each have stand-alone GUI and also Python scripting capabilities.

Based on VTK (Visualization Tool Kit, https://vtk.org/).

Page ▪ 18

Unix Demo

● Shell is a program where users can type commands.

● With the shell, it’s possible to invoke complicated programs like climate
modeling software or simple commands that create an empty directory
with only one line of code.

● The most popular Unix shell is Bash (the Bourne Again SHell —
so-called because it’s derived from a shell written by Stephen Bourne).

● Bash is the default shell on most modern implementations of Unix and
in most packages that provide Unix-like tools for Windows.

http://swcarpentry.github.io/shell-novice/

http://swcarpentry.github.io/shell-novice/

Page ▪ 19

Unix Demo - ls, pwd, cd

When the shell is first opened, you are presented with a prompt, indicating
that the shell is waiting for input.

$

Let’s try our first command, which will list the contents of the current
directory

$ ls

Desktop Downloads Movies Pictures

Documents Library Music Public

pwd shows you where you are
$ pwd

/home/manmeet

cd is used to change the directory
$ cd Documents

Page ▪ 20

Lists aren’t good as numerical arrays

Lists in Python are quite general, can have arbitrary objects as
elements.
Addition and scalar multiplication are defined for lists, but not
what we want for numerical computation, e.g.
Multiplication repeats:

>>> x = [2., 3.]

>>> 2*x

[2.0, 3.0, 2.0, 3.0]

Addition concatenates:
>>> y = [5., 6.]

>>> x+y

[2.0, 3.0, 5.0, 6.0]

Page ▪ 21

NumPy module

Instead, use NumPy arrays:
>>> import numpy as np

>>> x = np.array([2., 3.])

>>> 2*x

array([4., 6.])

Other operations also apply component-wise:
>>> np.sqrt(x) * np.cos(x) * x**3

array([-4.708164 , -46.29736719])

Note: * is component-wise multiply

Page ▪ 22

NumPy arrays

Unlike lists, all elements of an np.array have the same type
>>> np.array([1, 2, 3]) # all integers

array([1, 2, 3])

>>> np.array([1, 2, 3.]) # one float

array([1., 2., 3.]) # they’re all floats!

Can explicitly state desired data type:
>>> x = np.array([1, 2, 3], dtype=complex)

>>> print x

[1.+0.j, 2.+0.j, 3.+0.j]

>>> (x + 1.j) * 2.j

array([-2.+2.j, -2.+4.j, -2.+6.j])

Page ▪ 23

NumPy arrays for vectors and matrices

>>> A = np.array([[1.,2], [3,4], [5,6]])

>>> A

array([[1., 2.],

 [3., 4.],

 [5., 6.]])

>>> A.shape

(3, 2)

>>> A.T

array([[1., 3., 5.],

 [2., 4., 6.]])

>>> x = np.array([1., 1.])

>>> x.T

array([1., 1.])

Page ▪ 24

NumPy arrays for vectors and matrices

>>> A

array([[1., 2.],

 [3., 4.],

 [5., 6.]])

>>> x

array([1., 1.])

>>> np.dot(A,x) # matrix-vector product

array([3., 7., 11.])

>>> np.dot(A.T, A) # matrix-matrix product

array([[35., 44.],

 [44., 56.]])

Page ▪ 25

NumPy matrices for vectors and matrices

For Linear algebra, may instead want to use numpy.matrix:
>>> A = np.matrix([[1.,2], [3,4], [5,6]])

>>> A

matrix([[1., 2.],

 [3., 4.],

 [5., 6.]])

Or, Matlab style (as a string that is converted):
>>> A = np.matrix("1.,2; 3,4; 5,6")

>>> A

matrix([[1., 2.],

 [3., 4.],

 [5., 6.]])

Page ▪ 26

NumPy matrices for vectors and matrices

Note: vectors are handled as matrices with 1 row or column:
>>> x = np.matrix("4.;5.")

>>> x

matrix([[4.],

 [5.]])

>>> x.T

matrix([[4., 5.]])

>>> A*x

matrix([[14.],

 [32.],

 [50.]])

But note that indexing into x requires two indices:
>>> print x[0,0], x[1,0]

4.0 5.0

Page ▪ 27

Which to use, array or matrix?

For linear algebra matrix may be easier (and more like Matlab),
but vectors need two subscripts!
For most other uses, arrays more natural, e.g.

>>> x = np.linspace(0., 3., 100) # 100 points

>>> y = x**5 - 2.*sqrt(x)*cos(x) # 100 values

>>> plot(x,y)

np.linspace returns an array, which is what is needed here.
We will always use arrays.
See http://www.scipy.org/NumPy_for_Matlab_Users

Page ▪ 28

Rank of an array

The rank of an array is the number of subscripts it takes:
>>> A = np.ones((4,4))

>>> A

array([[1., 1., 1., 1.],

 [1., 1., 1., 1.],

 [1., 1., 1., 1.],

 [1., 1., 1., 1.]])

>>> np.rank(A)

2

Warning: This is not the rank of the matrix in the linear algebra
sense (dimension of the column space)!

Page ▪ 29

Rank of an matrix in Linear Algebra

Page ▪ 30

Rank of an array

Scalars have rank 0:
>>> z = np.array(7.)

>>> z

array(7.0)

NumPy arrays of any dimension are supported, e.g. rank 3:
>>> T = np.ones((2,2,2))

>>> T

array([[[1., 1.],

 [1., 1.]],

 [[1., 1.],

[1., 1.]]])

>>> T[0,0,0]

1.0

Page ▪ 31

Linear algebra with NumPy

>>> A = np.array([[1., 2.], [3, 4]])

>>> A

array([[1., 2.],

 [3., 4.]])

>>> b = np.dot(A, np.array([8., 9.]))

>>> b

array([26., 60.])

Now solve Ax = b:
>>> from numpy.linalg import solve

>>> solve(A,b)

array([8., 9.])

Page ▪ 32

Eigenvalues

>>> from numpy.linalg import eig

>>> eig(A) # returns a tuple (evals,evecs)

(array([-0.37228132, 5.37228132]),

array([[-0.82456484, -0.41597356],

[0.56576746, -0.90937671]]))

>>> evals, evecs = eig(A) # unpacks tuple

>>> evals

array([-0.37228132, 5.37228132])

>>> evecs

array([[-0.82456484, -0.41597356],

 [0.56576746, -0.90937671]])

Page ▪ 33

Quadrature (numerical integration)

Estimate

>>> from scipy.integrate import quad

>>> def f(x):

... return x**2

…

>>> quad(f, 0., 2.)

(2.666666666666667, 2.960594732333751e-14)

returns (value, error estimate).
Other keyword arguments to set error tolerance, for example.

Page ▪ 34

Lambda functions

In the last example, f is so simple we might want to just include
its definition directly in the call to quad.
We can do this with a lambda function:

>>> f = lambda x: x**2

>>> f(4)

16

This defines the same f as before. But instead we could do:
>>> quad(lambda x: x**2, 0., 2.)

(2.666666666666667, 2.960594732333751e-14)

Page ▪ 35

“Main program” in a Python module

Python modules often end with a section that looks like:
if __name__ == "__main__":

some code

This code is not executed if the file is imported as a module,
only if it is run as a script, e.g. by…

$ python filename.py

>>> execfile("filename.py")

In[1]: run filename.py

Page ▪ 36

Interactive Python, Indentation & Wrapping Lines

Page ▪ 37

Comments and Strings

Page ▪ 38

Docstrings, Python scripts and Python objects

Page ▪ 39

Docstrings, Python scripts and Python objects

Page ▪ 40

Declaring Variables

Page ▪ 41

Lists

Page ▪ 42

Copying Objects

Page ▪ 43

Copying Objects

Page ▪ 44

Mutable and Immutable objects

Page ▪ 45

Mutable and Immutable objects

Page ▪ 46

Tuples and Iterators

Page ▪ 47

range and enumerate

Page ▪ 48

linspace

Page ▪ 49

Python scripts and modules

Page ▪ 50

Python scripts and modules

Page ▪ 51

Python scripts and modules

Page ▪ 52

Writing scripts for ease of importing

Page ▪ 53

Reloading Modules

Page ▪ 54

Reloading Modules

Page ▪ 55

Command Line Arguments

Page ▪ 56

Command Line Arguments

Page ▪ 57

Importing modules

Page ▪ 58

The Python Path

Page ▪ 59

Python strings

Page ▪ 60

Other forms of import

Page ▪ 61

Other forms of import

Page ▪ 62

Python functions

Page ▪ 63

Lambda functions

Page ▪ 64

Jupyter Notebook

Page ▪ 65

Jupyter Notebook - File Menu

Page ▪ 66

Jupyter Notebook - Kernel

Page ▪ 67

Jupyter Notebook - Cell

Page ▪ 68

Summary statistics

>>> pima.describe()

Unnamed: 0 npreg glu bp skin bmi \

count 332.000000 332.000000 332.000000 332.000000 332.000000 332.000000

mean 166.500000 3.484940 119.259036 71.653614 29.162651 33.239759

std 95.984374 3.283634 30.501138 12.799307 9.748068 7.282901

min 1.000000 0.000000 65.000000 24.000000 7.000000 19.400000

25% 83.750000 1.000000 96.000000 64.000000 22.000000 28.175000

50% 166.500000 2.000000 112.000000 72.000000 29.000000 32.900000

75% 249.250000 5.000000 136.250000 80.000000 36.000000 37.200000

max 332.000000 17.000000 197.000000 110.000000 63.000000 67.100000

 ped age

count 332.000000 332.000000

mean 0.528389 31.316265

std 0.363278 10.636225

min 0.085000 21.000000

25% 0.266000 23.000000

50% 0.440000 27.000000

75% 0.679250 37.000000

max 2.420000 81.000000

Page ▪ 69

Pandas

“Python Data Analysis Library”

Mature library for data analysis

Developed from http://pandas.pydata.org/

Main author Wes McKinney has written a 2012 book (McKinney, 2012)

Page ▪ 70

Why Pandas?

A better Numpy: keep track of variable names, better indexing, easier
linear modeling.

A better R: Access to more general programming language.

Page ▪ 71

Get some data from R

Get a standard dataset, Pima, from R:
$ R

> library(MASS)

> write.csv(Pima.te, "pima.csv")

pima.csv now contains comma-separated values:
"","npreg","glu","bp","skin","bmi","ped","age","type"

"1",6,148,72,35,33.6,0.627,50,"Yes"

"2",1,85,66,29,26.6,0.351,31,"No"

"3",1,89,66,23,28.1,0.167,21,"No"

"4",3,78,50,32,31,0.248,26,"Yes"

"5",2,197,70,45,30.5,0.158,53,"Yes"

"6",5,166,72,19,25.8,0.587,51,"Yes"

Page ▪ 72

Read data with Pandas

Back in Python:
>>> import pandas as pd

>>> pima = pd.read_csv("pima.csv")

“pima” is now what Pandas call a DataFrame object. This object keeps
track of both data (numerical as well as text), and column and row
headers.
Lets use the first columns and the index column:

>>> import pandas as pd

>>> pima = pd.read_csv("pima.csv", index_col=0)

Page ▪ 73

Indexing the rows

For example, you can see the first two rows or the three last rows:
>>> pima[0:2]

npreg glu bp skin bmi ped age type
1 6 148 72 35 33.6 0.627 50 Yes
2 1 85 66 29 26.6 0.351 31 No
>>> pima[-3:]

npreg glu bp skin bmi ped age type
330 10 101 76 48 32.9 0.171 63 No
331 5 121 72 23 26.2 0.245 30 No
332 1 93 70 31 30.4 0.315 23 No
Notice that this is not an ordinary numerical matrix: We also got text (in
the “type” column) within the “matrix”!

Page ▪ 74

Indexing the columns

See a specific column, here ’bmi’ (body-mass index):
>>> pima["bmi"]
1 33.6
2 26.6
3 28.1
4 31.0
[here I cut out several lines]
330 32.9
331 26.2
332 30.4
Name: bmi, Length: 332
The returned type is another of Pandas Series object, — another of the
fundamental objects in the library:
>>> type(pima["bmi"])
<class ’pandas.core.series.Series’>

Page ▪ 75

Conditional indexing

Get the fat people (those with BMI above 30):
>>> pima.shape
(332, 9)
>>> pima[pima["bmi"]>30].shape
(210, 9)
Row and column conditional indexing
import pandas as pd
from pylab import *
df = pd.DataFrame(rand(10,5), columns=["A", "B", "C", "D", "E"])
df.ix[:, df.ix[0, :]<0.5]
These variations do not work
df[:, df[0]<0.5]
df[:, df[:1]<0.5]
df.ix[:, df[:1]<0.5]

Page ▪ 76

Conditional Indexing

Page ▪ 77

Constructing a DataFrame

Page ▪ 78

Filling missing data

Page ▪ 79

More information

http://pandas.pydata.org/

The canonical book “Python for data analysis” (McKinney, 2012).

Will it Python?: Porting R projects to Python, exemplified through scripts
from Machine Learning for Hackers (MLFH) by Drew Conway and John
Miles White.

Page ▪ 80

Thank you!

