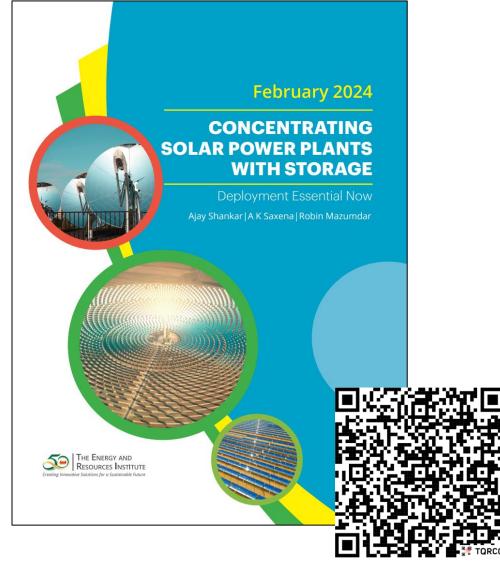
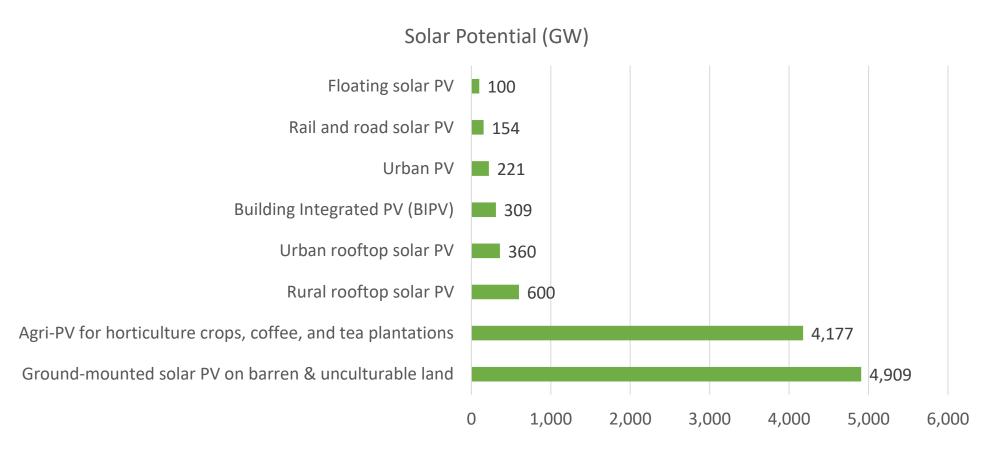


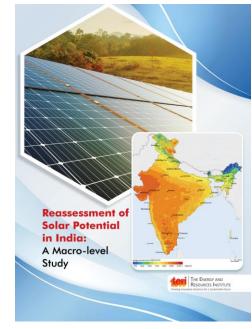
TERI's Report on Roadmap to India's 2030 Decarbonisation Target


• The report (July 2022) outlined a roadmap for achieving India's COP26 commitments identified energy storage as a key enabler to realise the 2030 targets.



TERI's Subsequent Work on Storage Solutions





TERI's Report on Re-Assessment of Solar Potential: A Macro-Level Study

CATEGORIES

Average Total Potential: 10,830 GW

Cost Analysis of Solar + Storage for Delhi (BRPL Case Study) - Methodology

OBJECTIVE

To compare the per-unit cost of electricity required to fully meet BRPL's daily demand using:

- Solar + BESS
- Solar + PSP
- New Thermal Power Plant (as benchmark)

APPROACH/METHODOLOGY

- Selected four representative days (2022–23) from BRPL's electricity demand data.
- Created theoretical solar generation curves using PVWatts for each season's day.
- Matched hourly solar output against demand to determine:
 - Solar energy directly used during daylight hours.
 - > Energy required from **storage** to meet non-solar-hour demand.
- Iteratively sized solar and storage capacities to ensure full daily demand coverage.

Cost Analysis of Solar + Storage for Delhi (BRPL Case Study) - Methodology

SYSTEM DESIGN ASSUMPTIONS

• Solar generation cost: ₹2.5/kWh (assumed based on prevailing tariff benchmarks).

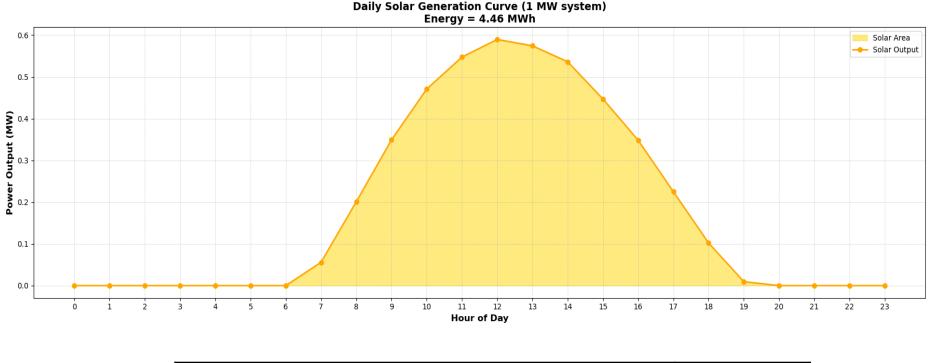
• Storage costs¹:

PSP: ₹3.81/kWh (delivered, excluding pumping)

BESS: ₹2.8/kWh (2-hour systems)

• Round-trip efficiencies²:

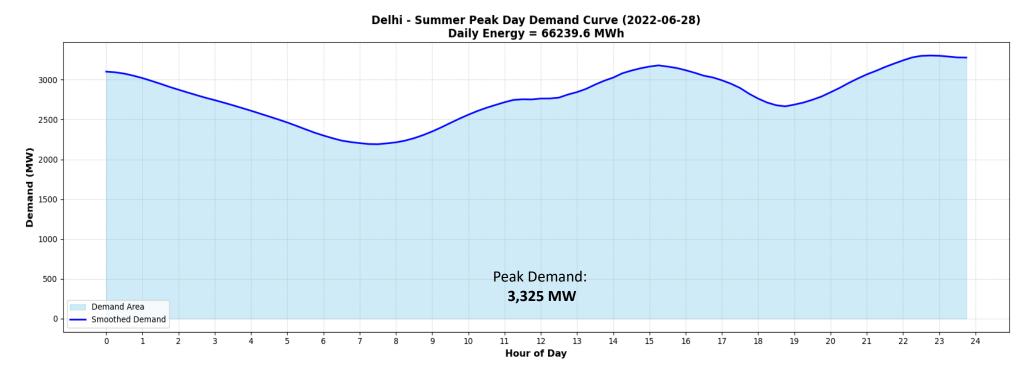
• PSP: **80**%


• BESS: **85**%

- In this theoretical exercise, only the generation and storage costs are considered.
- Transmission charges and losses, open access charges, wheeling charges, cross-subsidy charges and financing costs are excluded.

Generation Analysis of Solar + Storage for Delhi (BRPL Case Study) (1/5)

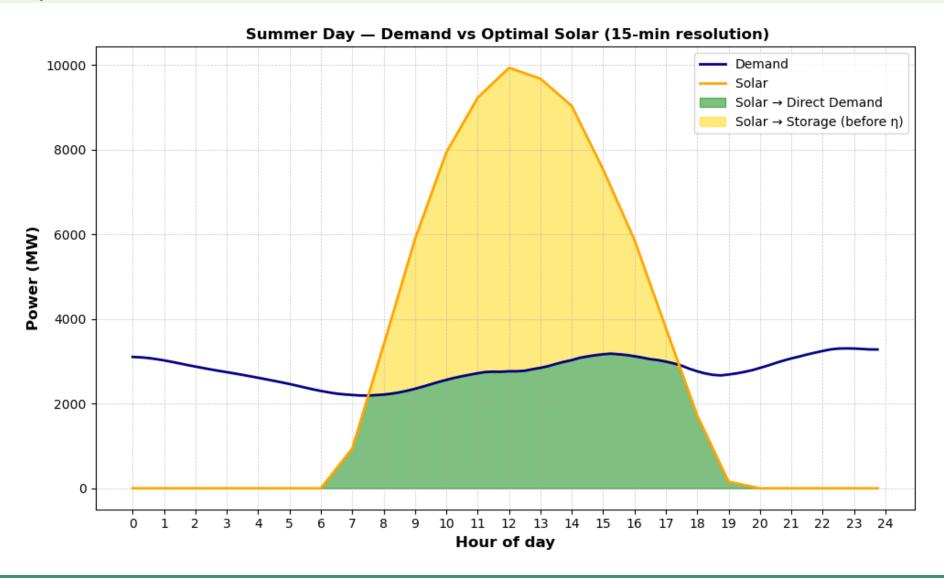
Summer Peak Day: 28th June 2022 CASE 1: BESS


Solar energy generation from 1 MW	4.46
(MWh/day)	4.46

For optimal capacity, calculated solar multiplier to get solar generation to meet demand during solar hours directly and non-solar hours through storage.

Generation Analysis of Solar + Storage for Delhi (BRPL Case Study) (2/5)

Summer Peak Day: 28th June 2022 CASE 1: BESS



Parameter (MWh)	Value		
Total daily energy demand	66,240		
Energy demand during solar hours	36,675		
Energy demand during non-solar hours	29,565		

Generation Analysis of Solar + Storage for Delhi (BRPL Case Study) (3/5)

Summer Peak Day: 28th June 2022 CASE 1: BESS

Generation Analysis of Solar + Storage for Delhi (BRPL Case Study) (4/5)

Summer Peak Day: 28th June 2022 CASE 1: BESS

Parameter	Value
Approximate total solar capacity needed (MW)	16,270
Total solar energy generation (MWh)	72,503
Solar generation directly used for demand (MWh)	30,967
Excess solar generation (MWh)	41,536
Energy available for storage after losses (MWh)	35,305
Energy drawn from storage for solar-hour deficit (MWh)	5,740
Non-solar hour demand met through storage (MWh)	29,565
% of solar generation used directly for demand	42.7
% of solar generation sent to storage (before losses)	57.3

Generation Analysis of Solar + Storage for Delhi (BRPL Case Study) (5/5)

Summer Peak Day: 28th June 2022 CASE 2: PSP

Parameter	Value
Approximate total solar capacity needed (MW)	16,845
Total solar energy generation (MWh)	75,066
Solar generation directly used for demand (MWh)	31,104
Excess solar generation (MWh)	43,962
Energy available for storage after losses (MWh)	35,170
Energy drawn from storage for solar-hour deficit (MWh)	5,605
Non-solar hour demand met through storage (MWh)	29,565
% of solar generation used directly for demand	41.4
% of solar generation sent to storage (before losses)	58.6

Cost Analysis of Solar + Storage for Delhi (BRPL Case Study) (1/2)

$$Cost_{System} = \frac{Total \ Generation_{Solar} \times Cost_{Solar} + \ Generation \ Delivered_{ESS} \times Cost_{ESS}}{Total \ Demand}$$

- PV cost applies to all PV generation and storage tariff excludes charging energy.
- A 2-hour BESS system has been assumed as competitively discovered prices for the same are available to serve as a good reference. Many such 2-hour BESS can be installed to enable the supply of electricity to fully meet the demand curve of the day.

Cost Analysis of Solar + Storage for Delhi (BRPL Case Study) (2/2)

SUMMER DAY 28 June 2022	BESS	PSP
Total generation by solar (MWh)	72,503	75,066
Total generation delivered by storage (MWh)	35,305	35,170
Solar PV tariff (Rs/kWh)	2.5	2.5
Standalone Storage tariff (Rs/kWh, excluding charging		
costs) ¹	2.8	3.81
Total energy demand (MWh)	66,240	66,240
Weighted average cost per unit system (Rs/unit)	4.23	4.86

Cost Analysis of Solar + Storage for Delhi (BRPL Case Study) - Summary

	SUMMI 28 June		WINTE 10 Januai			MN DAY nber 2022	SPRINC 30 April	
COST ANALYSIS	BESS	PSP	BESS	PSP	BESS	PSP	BESS	PSP
Total generation by solar (MWh)	72,503	75,066	39,870	41,039	63,906	66,189	56,914	58,962
Total generation delivered by storage (MWh)	35,305	35,170	16,181	16,096	31,445	31,325	28,189	28,085
Solar PV tariff (Rs/kWh)	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50
Standalone Storage tariff (excluding charging costs)	2.80	3.81	2.80	3.81	2.80	3.81	2.80	3.81
Total energy demand (MWh)	66,240	66,240	36,996	36,996	58,328	58,328	51,914	51,914
Weighted average cost per unit system (Rs/unit)	4.23	4.86	3.92	4.43	4.25	4.88	4.26	4.90

Cost Analysis of Solar + Storage for Delhi (BRPL Case Study)- Conclusion

- BESS-based systems are consistently cheaper than PSP-based systems.
- Both solar + storage configurations are already competitive with new thermal generation.
- These results exclude additional costs such as transmission charges and losses, open access charges, land cost, and financing cost, focusing only on generation and storage costs.
- Considering thermal power tariffs of ₹5.4–₹5.8/kWh, solar + storage is emerging as a viable and cleaner 24×7 supply option.

System	Range of Cost (₹/kWh)
Solar + BESS	3.92 – 4.26 ₹/kWh
Solar + PSP	4.42 – 4.9 ₹/kWh
New Thermal Power	5.5–5.8 ₹/kWh

