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Imagine a world where farmers can check the 

health of their crops from their smartphones, adjust 

watering schedules based on real-time data, and 

apply fertilizers only where needed, all from the 

comfort of their homes. Welcome to the era of 

precision agriculture, where cutting-edge technology 

meets traditional farming, transforming it into a 

high-tech operation. Precision Agriculture (PA) is a 

farming management concept that uses technology to 

observe, measure, and respond to variability in crops. 

It aims to optimize field-level management regarding 

crop farming by using detailed, site-specific 

information (Tripathi et al., 2012; Maurya et al., 

2024). This approach not only increases efficiency 

and yields but also reduces waste and environmental 

impact (Stein, 2024). Geospatial technology (i.e., 

Remotes Sensing & GIS) is one of the critical 

technologies driving PA. It involves collecting data 

about crops and fields from a distance, primarily 

using satellites, drones, or aircraft. These sensors 

capture images in different wavelengths of light, 

including those invisible to the human eye, to gather 

detailed information about the crops (Sangeetha, 

2024). The availability of high resolution (spatial, 

spectral and temporal) satellite images has promoted 

 

 

 

 

 

 

 

 

 

the use of remote sensing & GIS in many PA 

applications, including crop monitoring, soil 

condition assessment, irrigation management, 

nutrient application, disease and pest management, 

and yield prediction (Sisodia et al., 2020). 

Vegetation indices (VIs) are quantitative metrics 

derived from remote sensing data to assess the health 

and vigor of crops. This article explores several key 

vegetation indices and their roles in monitoring crop 

growth and health, water stress, yield estimation, 

moisture content, and determining the optimal time 

for harvesting. 

Enhancing Precision Agriculture: The Role of 

Remote Sensing-Based VIs 

VIs is calculated using the reflectance values 

from different parts of the electromagnetic spectrum, 

particularly the visible and near-infrared (NIR) 

regions. The use of VIs is a crucial aspect of remote 

sensing, as it monitors the changes in spectral 

reflectance values throughout the different growth 

stages of crops. A diverse range of VIs can be 

employed to classify crops and assess their condition 

and health (Vidican et al., 2023; Kumawat et al., 

2023). Normalized Difference Vegetation Index 

(NDVI) is The Normalized Difference Vegetation 
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Index (NDVI) is widely accepted index to quantify 

vegetation health by measuring the greenness of 

plants. NDVI has become a staple for monitoring 

crop growth and green cover (Jena et al., 2019). 

However, more sophisticated VIs like the Soil 

Adjusted Vegetation Index (SAVI), Enhanced 

Vegetation Index (EVI), Normalized Difference 

Moisture Index (NDMI) and the Green Chlorophyll 

Index (GCI) have been developed to account for 

Chlorophyll content, Water stress, soil background 

effects and provide more specific information about 

plant health.  

The most used vegetation indices in precision 

agriculture include: 

Normalized Difference Vegetation Index (NDVI): 

NDVI is a widely used vegetation index that 

measures plant health based on how plants absorb 

and reflect light at certain wavelengths (Jena et al., 

2019; Alvino et al., 2020). It is calculated using the 

formula: 

NDVI = (NIR + Red) /(NIR − Red) 

Higher NDVI values indicate healthy, dense 

vegetation, while lower values suggest sparse or 

stressed vegetation. NDVI is essential for crop health 

monitoring, growth assessment and yield estimation. 

Enhanced Vegetation Index (EVI): EVI improves 

upon NDVI by reducing the effects of atmospheric 

conditions and soil background noise (Shammi and 

Meng, 2020). It is calculated as: 

G*((NIR – Red) / (NIR + C1* Red – C2* Blue + L)) 

Where, G, C1, C2 & L are coefficients for 

atmospheric correction and soil adjustment. EVI  

 

provides more accurate assessments of vegetation 

health and productivity, especially in regions with 

high biomass. 

Soil-Adjusted Vegetation Index (SAVI): SAVI 

minimizes soil brightness influences, making it 

suitable for areas with sparse vegetation (Farg et al., 

2012; Huete, 1988). It is calculated as: 

SAVI = ((NIR – RED) / (NIR + RED + L)) * (1 + L) 

Where, L is a soil adjustment factor to the equation 

of NDVI in order to correct for soil noise effects, i.e., 

soil color, soil moisture, soil variability across 

regions, etc. SAVI is beneficial for accurate crop 

monitoring in arid and semi-arid regions. 

Normalized Difference Water Index (NDWI): 

NDWI is used to monitor water content in vegetation 

and assess plant water stress (Gao, 1996). It is 

calculated using green and near-infrared wave-

lengths: 

NDWI= (Green-NIR) / (Green+NIR) 

NDWI is particularly useful for managing 

irrigation and understanding crop water needs, 

ensuring efficient water resource management. 

Normalized Difference Moisture Index (NDMI): 

NDMI assesses vegetation moisture content, crucial 

for drought monitoring and water stress analysis (Gu 

et al., 2008). It is calculated as: 

NDMI = (NIR - SWIR) / (NIR + SWIR) 

Where, SWIR represents shortwave infrared 

reflectance. NDMI identifies areas experiencing 

water stress and guides irrigation management 

practices. 

Green Chlorophyll Index (GCI): GCI is used to  
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estimate chlorophyll content in vegetation, directly 

related to crop health and productivity (Gitelson et 

al., 2002). It is calculated as: 

GCI= (Green/NIR) - 1 

GCI is valuable for monitoring crop health, 

nutrient status, and predicting yields. 

Role of Vegetation Indices in Crop Monitoring 

and Management 

Monitoring Crop Growth and Health: Vegetation 

indices such as NDVI, EVI, and GCI provide real-

time data on crop health, allowing farmers to detect 

early signs of stress, disease, or nutrient deficiencies. 

This early detection facilitates timely interventions 

and helps maintain optimal crop growth conditions. 

Assessing Water Stress: NDWI and NDMI are 

crucial for monitoring plant water content and stress. 

These indices help farmers optimize irrigation 

schedules by identifying areas that require more or 

less water, ensuring efficient water usage and 

preventing over- or under-watering. 

Yield Estimation: By analysing vegetation indices 

throughout the growing season, farmers can estimate 

crop yields more accurately. This information aids in 

better planning for harvest, storage, and marketing, 

ultimately improving profitability. 

Moisture Content Monitoring: NDMI and other 

moisture-related indices provide insights into soil 

and plant moisture content. This information is 

essential for managing irrigation and understanding 

the moisture dynamics of crops, particularly during 

drought conditions. 

Determining Optimal Harvest Time: Vegetation  

 

indices help determine the best time for harvesting 

by monitoring the physiological status of crops. For 

example, GCI can indicate when crops have reached 

their peak chlorophyll content, signalling readiness 

for harvest. 

Conclusion 

As technology advances, the potential for 

precision agriculture continues to grow. New 

satellite systems, drones with advanced sensors, and 

machine learning algorithms are making data 

collection more accurate and analysis more 

sophisticated. The integration of these technologies 

promises to make farming even more efficient, 

sustainable, and productive. However, challenges 

remain. Access to very high-resolution imagery and 

the expertise to interpret the data can be expensive 

and technically demanding. Ensuring that small and 

medium-sized farmers can benefit from these 

technologies is crucial for the widespread adoption 

of precision agriculture. Remote sensing-based 

vegetation indices are indispensable tools in 

precision agriculture. They provide detailed, 

actionable insights into crop health, water stress, 

yield potential, moisture content, and optimal harvest 

times. As we move forward, embracing these 

technologies will be essential in meeting the global 

food demand while preserving our natural resources. 

The future of farming is here, and it's smarter, 

greener, and more efficient than ever before. 
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