
Water Use Efficiency (WUE)

Introduction

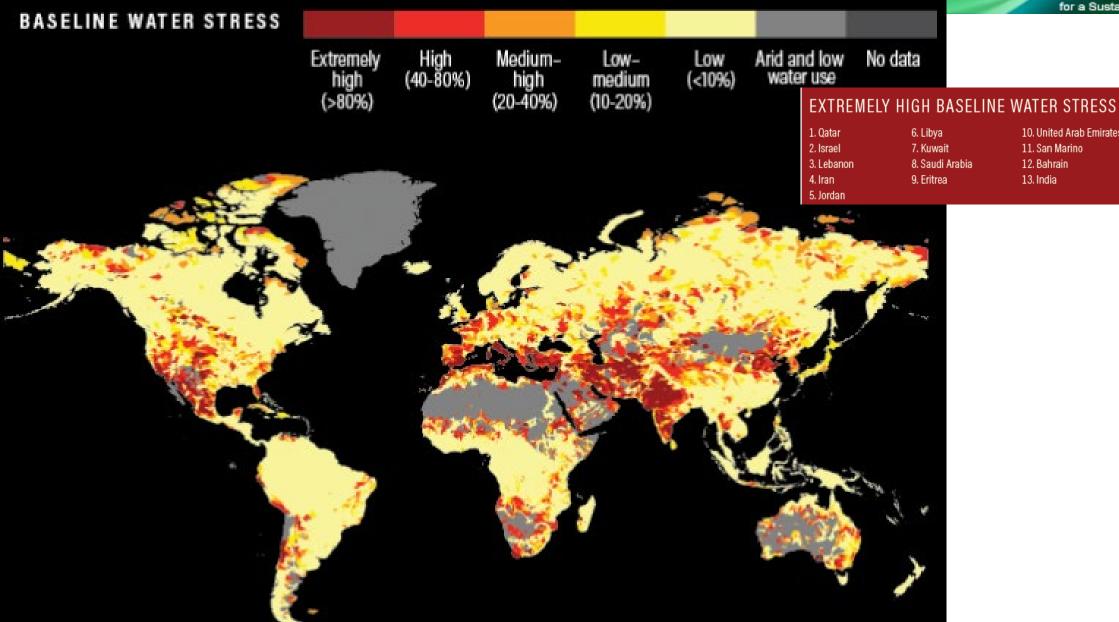
- Sources of water for usage:
- Ground water
- Surface water (rivers, lakes, etc.)
- Rainfall
- Sea water desalination
- Glaciers

Water Risk Atlas

14. Pakistan

16. Oman

17. Botswana


15. Turkmenistan

10. United Arab Emirates

11. San Marino

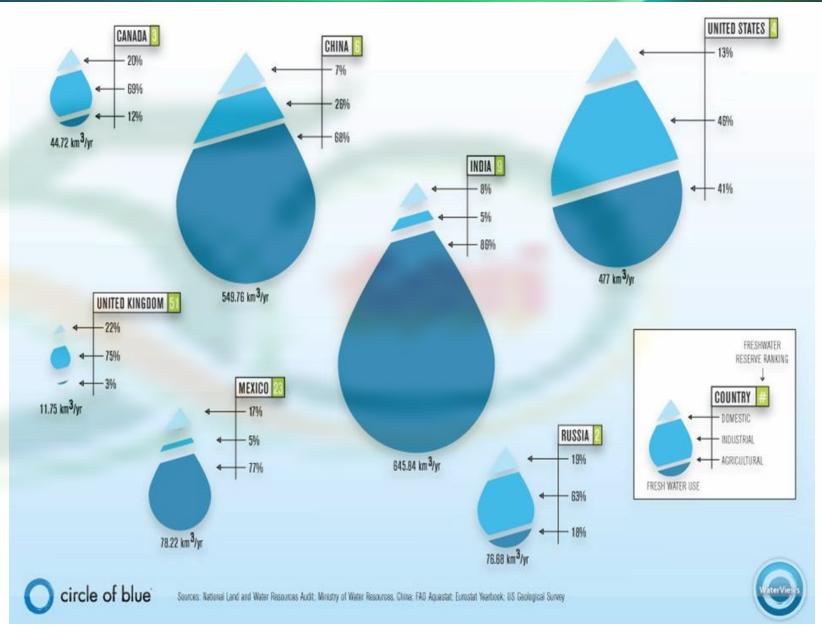
12. Bahrain

13. India

Major Challenges in Water Sector

- Declining per capita water availability
- Water stressed river basins
- Increasing & competing water demand
- Overexploitation/Depletion of groundwater
- Water quality issues
- Inefficient use of water: Agri/Irrigation; Domestic (Urban & Rural); Industrial
- Climate change impacts
- Irrational Tariff, inequitable access

SECTORAL WATER USE



Water Use across the world in different sectors

Three main sectors for water use:

- > Agriculture
- > Industry
- Domestic

Water use in Agriculture Sector

Types of irrigation:

- Flood irrigation
- Furrow irrigation
- Micro irrigation:
 - Drip
 - Sprinkler

Main water intensive crops grown:

- Rice
- Cotton
- Sugarcane

Water use in Industrial Sector

Water using industries:

- Thermal power plants
- Heavy engineering
- Pulp & paper
- Textiles
- Steel

Main areas where water is used

- Process water
- Cooling Process
- Domestic

Water use in Domestic Sector

- Water uses in a household:
- Bathing: 55 litres
- Toilet flushing: 30 litres
- Washing of clothes: 20 litres
- Washing the house: 10 litres
- Washing utensils: 10 litres
- Cooking: 5 litres
- Drinking: 5 litres

INTRODUCTION TO WATER AUDITS

Water Audits

"Water Audit is a quantitative and qualitative analysis of water consumption/use to identify losses and options for water conservation by means of recycling and reuse of water."

Benefits of Water Audit:

- Helps in conserving water
- Reduce wastage and unnecessary use
- Financial savings

Significant savings in water usage by simple water conservation measures

Typical Efficiencies in various Sectors

SI. No.	Water Use and methods	Efficiency (%)
a	Irrigation efficiencies	
	Conveyance	
	 through unlined canal for surface water 	55-60*
	 through lined canal for surface water 	70-75*
	 Application for both surface and ground water 	
	- Flood irrigation	65
	- Furrow irrigation	80
	- Sprinkler	85
	- Drip	90
	 Overall efficiency for surface water system 	30-65
	Overall efficiency for ground water system	65-75
b	Urban water supply	50-60
С	Rural water supply	60-70
d	Industrial use	80

^{*}Conveyance efficiency of the canal depends on many factors such as length of the canal, type of soil, material used for lining etc.

Opportunities for improving WUE

For efficient industrial water use:

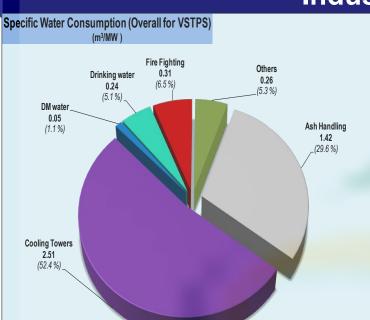
- Better technologies
- Wastewater recycling
- Tapping leakages
- Water conservation (RWH, GW recharge)

For efficient irrigation:

- Drip & Sprinkler systems
- Crops suitable to the area should be grown (e.g., Rice in East & North eastern India)

For efficient domestic water supply/usage:

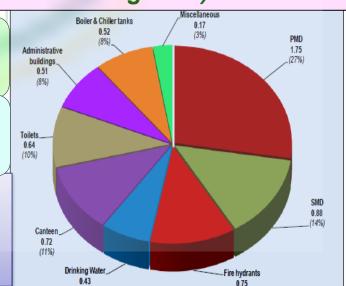
- Reduction in Non-Revenue Water (NRW)
- Water conservation
- Reclamation and reuse of wastewater


EXAMPLES FROM EXPERIENCE

Experience

Industries (TPP, Heavy Engineering, Pulp & Paper, etc.)

Thermal Power Plants: The potential of daily water saving was about 18% to 23% of intake water (e.g. Actual reduction from 4.8 m³/MW to 3.2 m³/MW)


Heavy Engineering: Water Saving Potential = 46.8 % of Intake Water (675 m³/day)

Healthcare (GSK): (Water footprint reduction in value chain-Wheat, Barley, Milk); Water saving potential of 20.69 MCM (e.g., RT/RWH, Farm Ponds, Artificial recharge of GW, Drip/ sprinkler irrigation)

Tobacco Industry: Water saving potential – about 55 m³/day (~ 22.2% of the freshwater intake)

IT Industry (WIPRO): Water saving potential – about 638 m³/day (~ 43% of total plant water consumption)

Railways: Recycling Wastewater can save ~0.23 MLD water at one cluster of washing line. (Overall recycling wastewater could save ~1-2 MLD water (almost 45%-60% of demand-supply gap of fresh water)

Thank You